
Mean zonal flows
induced by Boussinesq thermal convection

in rotating spherical shells

Shin-ichi Takehiro∗1

Youhei Sasaki1, Ken-suke Nakajima2, Yoshi-Yuki Hayashi3

1Kyoto Univ. , 2Kyushu Univ.,3Kobe Univ.



Outline

Background

Formulation

Linear theory

Weak nonlinear theory : generation of mean zonal flows

Full nonlinear calculations

Our calculations

Summary



Outline

Background

Formulation

Linear theory

Weak nonlinear theory : generation of mean zonal flows

Full nonlinear calculations

Our calculations

Summary



Surface flows of gas giant planets

• Surface flows of Jupiter and
Saturn are characterized by the
broad prograde jets around the
equator and the narrow alternating
jets in mid- and high-latitudes.

• It is not yet clear whether those
surface jets are produced by
convective motions in the “deep”
region, or are the result of fluid
motions in the “shallow” weather
layer.

(Vasavada and Showman, 2005)



“Deep” models and “Shallow” models

• “Shallow” models
◦ 2D turbulence on a rotating sphere
◦ Primitive model
• Result: Narrow alternating jets in mid-

and high-latitudes.
• Problem: the equatorial jets are not

necessarily prograde

• “Deep” models
◦ Convection in rotating spherical

shells
• Result: Produce equatorial prograde

flows easily
• Problem: difficult to generate

alternating jets in mid- and
high-latitudes
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Model setup

• Boussinesq fluid in a rotating spherical shell.
◦ scaling: the shell thickness, viscous diffusion time, temperature difference.

∇·u = 0,

E
{
∂u
∂t
+ (u · ∇)u − ∇2u

}
+ 2k × u + ∇p =

RaE2

Pr
r
ro

T,

∂T
∂t
+ (u · ∇)T =

1
Pr
∇2T.

• Parameters:
◦ Plandtl number: Pr =

ν

κ

◦ Rayleigh number: Ra =
αgo∆T D3

κν
◦ Ekman number: E =

ν

ΩD2

◦ radius ratio: η =
ri

ro



Outline

Background

Formulation

Linear theory

Weak nonlinear theory : generation of mean zonal flows

Full nonlinear calculations

Our calculations

Summary



Slowly rotating cases
Busse (1970a)
• Asymptotic expansion with small parameter, small rotation rate
• 0th order
◦ convection structure without rotation rate
◦ degeneration of Ym

n modes with the same degree n
• 1st order
◦ retrograde propagation
• 2nd order
◦ preference of the sectorial mode Yn

n
◦ banana-type structure



Rapidly rotating cases

• Due to the Taylor Proudman theorem, convective
motion is along the rotation axis (columnar
convection, Busse 1970b).

• The columns are distorted by the curvature of the
outer boundary and form spiral structure.

• The tilting causes cylindrically outward Reynolds
stress.

• Convection cells propagate in the prograde
direction

(Zhang 1992)



Banana or column
Takehiro (2010)
• Slowly rotating cases
◦ Banana type structure→ retrograde propagation
• Rapidly rotating cases
◦ Columnar type structure→ prograde propagation

• Explanation with conservation of potential vorticity

Slowly rotating case Rapidly rotating case
(Ek = 10−1, Pr = 1) (Ek = 10−2, Pr = 1)
Contour surfaces of absolute value of vorticity



Propagation mechanism
Takehiro (2010)
• Importance of meridional structure
◦ Slow (banana) : vortex tubes bend along the shell
◦ Rapid (column) : vortex tubes extend along the rotation axis, suppressed by

the outer spherical boundary.

Slowly rotating case Rapidly rotating case



Spiral structure and Rossby waves

Reason why spiral structure appears?
• Dispersion relation of Rossby waves

ω = − βk
k2 + l2

• Incorrect explanation
◦ Tilting of the boundaries larger in the outer region
→ Topographic β large
→ Phase speed of the waves faster
→ Tilting of the phase

• Phase speed must be identical in critical modes
• Correct explanation
◦ an increase of the radial wavenumber in the outer region due to conservation

of the phase speed.



Spiral structure and Rossby waves

• Variation of β in y direction→ variation of
y-wavenumber l (ω, k are conserved).

l(y) = ±
√
−k2 − β(y)k

ω

• Large β(y)→ Large l(y)
→ strong tilting of the phase in the
outward region→ spiral structure
emerges

• Direction of the tilting
◦ Rossby waves propagate outward (the inner

region is convective unstable)
◦ Group velocity Cgy = 2βkl/(k2 + l2)2 must be

positive→ positive l(y)

(Takehiro and Irie, 2001)



Spiral structure and Rossby waves :
dependency of the Prandtl number
Takehiro (2008)

• Small Pr → small viscosity→ longer propagation of waves→ spiral
structure

• Large Pr → large viscosity→ waves dissipate quickly, shorter
propagation→ columnar structure

• Calculation with WKB theory

ψ = ψ0ei[kx+
∫

l(y)dy−ωt] · e−
∫

Pr(k2+l(y)2)/Cgy(y)dy

Pr = 0.1 Pr = 0.3 Pr = 0.5 Pr = 1.0
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Weak non-linear analysis

• Obtaining linear responses to the non-linear terms into which are
substituted the critical solution
(cf. Takehiro and Hayashi 1999)

◦ Original equations :

∂x
∂t
+ Lx + N[x] = 0,

◦ Critical solution (linearized equations) :

∂x(1)

∂t
+ Lx(1) = 0,

◦ Weak non-linear fields :

Lx(2) = −N[x(1)].



Generation of mean zonal flow
∼ weak nonlinear calculations
Takehiro and Hayashi (1999)



Generation of mean zonal flow
∼ weak nonlinear calculations

• Large Pr : meridional
circulation
⇓
equatorial sub-rotation

• Small Pr : Reynolds
stress
⇓
equatorial
super-rotation



Slowly rotating cases with large Pr

AM transport by mean meridional circulations

• Convective heat transport

⇒ High temp. in the upper layer around the
equator

⇒ Latitudinal temperature gradients

⇒ Induced mean meridional circulation

⇒ Transport stellar AM from the equator

⇒ Equatorial sub-rotation

Ek = 1/
√

10, Pr = 102



Rapidly rotating cases with large Pr

Thermal wind balance

∂u

∂t
+ u · ∇u + 2Ω × u = −1

ρ
∇p − αTg+ν∇2u

• Taking rotation,
−(2Ω · ∇)u = −α∇T × g

• Longitudinal components:
2Ω

∂vφ

∂z
= −αg(r)

r
∂T
∂θ

• Thermal wind balance :
◦ Torque by Coriolis force = Torque by

buoyancy Ek = 10−3, Pr = 102



Rapidly rotating cases with small Pr

• Curvature of the outer boundary
⇒ tilting of convection cells
⇒ velocity correlation v′φv

′
r

⇒ Reynolds stress transports AM outward
⇒ equatorial super-rotation (cf. Busse 1983)

(Busse 2002) Ek = 10−3, Pr = 1



Slowly rotating cases with small Pr

• Sectorial type horizontal structure
⇒ longitudinal velocity is twisted by Coriolis
⇒ velocity correlation v′φv

′
θ

⇒ Reynolds stress transports AM equatorward
⇒ equatorial super-rotation (cf. Busse 1970, 1973)

Ek = 1/
√

10, Pr = 1



Outline

Background

Formulation

Linear theory

Weak nonlinear theory : generation of mean zonal flows

Full nonlinear calculations

Our calculations

Summary



Pioneering calculations

Radial velocity Mean zonal flows Surface zonal flows
• Sun and Schubert (1995)
◦ Numerical calculations with large Ra, low Ek, high resolution
◦ Alternating band structure emerges?



Higher resolution, longer time integrations

Temperature Axial vorticity Mean zonal flows
(equatorial, meridional)

• Christensen (2002)
◦ Systematic parameter study for high-Rayleigh number convection
◦ Alternating band structure do not emerge!
◦ Interpret alternating bands of SS1995 as residual of initial conditions



“Thin” spherical shell model

• Heimpel and Aurnou(2007)
(hereafter, HA2007)
◦ “Thin” spherical shell model

with large Rayleigh number,
small Ekman number.

◦ Prograde jets and alternating
jets in mid- and high-latitudes
can produce simultaneously

◦ However, eight-fold symmetry in
the longitudinal direction is
assumed.
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Purpose

• HA2007: eight-fold symmetry in the longitudinal direction is assumed.
◦ The artificial limitation of the computational domain may influence on the

structure of the global flow field.
• Zonal flows may not develop efficiently due to the insufficient upward cascade of

two-dimensional turbulence
• Stability of mean zonal flows may change with the domain size in the longitudinal

direction.

• In the present study:
◦ Numerical simulations in the whole thin spherical shell domain.
◦ Coarse spatial resolution and slow rotation rate are used due to the limit of

computational resources.



Experimental setup

• Boundary condition: Isothermal, Impermeable and Stress free.
• Input parameters:

parameters present study HA2007
Prandtl number: Pr 0.1 0.1

Radius ratio: η 0.75 0.85, 0.9
Ekman number: E 10−4 10−6

Modified Rayleigh number: Ra∗ 0.05, 0.1 0.05

◦ the definition of modified Rayleigh number: Ra∗ =
RaE2

Pr
=
αg∆T D
Ω2D

• the ratio of Coriolis term and buoyancy term
• Output parameters:
◦ (local) Reynolds number, Re, is equivalent to the non-dimensional velocity in

the chosen scaling.
◦ (local) Rossby number: Ro = ERe



Numerical methods

• Traditional spectral method.
◦ Toroidal and Poloidal potentials of velocity are introduced.
◦ The total wave number of spherical harmonics is truncated at 170, and the

Chebychev polynomials are calculated up to the 48th degree.
• The numbers of grid points:512, 256, and 48 in the longitudinal, latitudinal, and

radial directions, respectively.

• In order to save computational resources, we use hyperdiffusion with the
same functional form as the previous studies

ν =

{
ν0, for l ≤ l0,
ν[1 + ε(l − l0)2], for l > l0.

◦ we choose l0 = 85, ε = 10−2

• The time integration is performed using the Crank-Nicolson scheme for
the diffusion terms and the second-order Adams-Bashforth scheme for
the other terms.



Results: Ra∗ = 0.05

Zonal velocity (Ra*=0.05)

0

Axial Vorticity

0

Zonal velocity (Ra* = 0.05)

-400 -200 0 200 400

• Broad prograde equatorial jet
• Alternating zonal jets do not

emerge in mid- and
high-latitudes.
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Results: Ra∗ = 0.1

Zonal velocity (Ra*=0.1)

0

Axial Vorticity

0

Zonal velocity (Ra* = 0.1)
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• Broad prograde equatorial jet
• Mean zonal flow: alternating

zonal jets emerge in mid- and
high-latitudes

• Outer surface: alternating
zonal jets in high latitudes ? -15 -10 -5 0 5 10 15
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Results: output parameters

• Input parameters

parameters present study HA2007
Prandtl number: Pr 0.1 0.1

Radius ratio: η 0.75 0.85, 0.9
Ekman number: E 10−4 10−6

Modified Rayleigh number: Ra∗ 0.05, 0.1 0.05

• Output parameters

parameters present study HA2007
local Reynolds numnber: Re 3.59 × 102, 1.13 × 103 5 × 104

local Rossby number: Ro 3.59 × 10−2, 1.13 × 10−1 1.2 × 10−2, 2.5 × 10−2

◦ small Re, i.e. weak jet
◦ Ro, i.e. slow rotation rate



Comparison with the Rhines scale

• Rhines wavenumber and wavelength :
kβ =

√
β/2U, λβ = 2π

√
2U/β.

• Inside the tangent cylinder, assuming 2-dim
columnar motion,

β =
2
E

1
h

dh
ds
, h(s) =

√
r2

o − s2 −
√

r2
i − s2.

• Substituting s = ro cosϕ, we can get jet
latitudinal wavelength ϕβ
(Heimpel and Aurnou 2007).

ϕβ ≡
λβ

ro sinϕ
= 2π

√
UE(χ2 − cos2 ϕ)

ro sinϕ cosϕ
.



Comparison with the Rhines scale
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Blue line : ϕβ(ϕ), red cross : jet wavelength from the numerical result

Rhines scale can explains the jet wavelength (qualitatively?)
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Summary and discussion

.
Summary
..

.

. ..

.

.

• the profile of mean zonal flow:
◦ Broad prograde equatorial jet
◦ Alternating zonal jets emerge in mid- and high-latitudes
• Outer surface: alternating zonal jets in high latitudes ?
◦ thick shell? , small Ra∗ ?, large E ?
◦ hyperdiffusivity?

.
In the future...
..

.

. ..

.

.

• More ’thin’, ’fast rotating’ spherical shell convection
◦ η = 0.75 η = 0.8, 0.85, 0.9
◦ E = 10−4 → E = 3 × 10−5

• Investigation of generation mechanism
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Taylor Proudman theorem

• Coriolis term dominates in the momentum eq. ⇒ geostrophic balance

∂u

∂t
+ u · ∇u + 2Ω × u = −1

ρ
∇p−αTg + ν∇2u

• Taking rotation operation,
.
Taylor Proudman theorem
..
.
. ..

.

.(2Ω · ∇)u = 0.

• Fluid motion is uniform along the rotation axis⇒ two-dimensional motion
(e.g. Taylor columns)



Conservation of potential vorticity

• Conservation of potential vorticity⇔ Local conservation of angular
momentum

.
Conservation of potential vorticity
..

.

. ..

.

.

2Ω + ζz

h
= const.

where ζz is the axial vorticity component, h is the hight of the fluid
column.
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