Baroclinic dynamics in the presence of slopes

Julian Mak (HKUST + NOC)

Overview

- 0. shelf seas and slopes, baroclinic eddies, and it's parameterisation
- 1. baroclinic turbulence over slopes
 - \rightarrow nonlinear simulations
 - \rightarrow parameterisations
 - \rightarrow GEOMETRIC: an eddy-mean interaction framework

▲ロト ▲ 帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q (~

- \rightarrow parameterising suppression of fluxes
- 2. mechanism for slope suppression
 - \rightarrow linear instability point of view?
 - \rightarrow revisiting the (sloped) Eady problem
 - \rightarrow interpretation in terms of CRWs
 - \rightarrow GEOMETRIC analysis

Shelf seas + continental slopes

(日) (間) (目) (日) (日)

Figure: Locations of shelf seas denoted by the cyan colour. Taken from Wikipedia (https://en.wikipedia.org/wiki/Continental_shelf) made from NOAA data.

exchange between shelves and open ocean important

Baroclinic eddies

Baroclinic eddies

・ロト・(部)・(目)・(目)・(日)・(の)へ()

Baroclinic instability

baroclinic instability

 \rightarrow reduces flow shear (\Rightarrow reducing tilt in isopycnal / isentrope)

 \rightarrow fueled by available potential energy

also important for momentum transport

eddy form stress \leftrightarrow eddy buoyancy flux vertical momentum transfer \leftrightarrow lateral heat transfer

(figures from David Marshall)

Parameterisation

from Helene Hewitt (UKMO)

(日) (四) (日) (日) (日) (日)

nar

Part 1: baroclinic turbulence over slopes

JAMES Journal of Advances in Modeling Earth Systems* RESEARCH ARTICLE Scalings for Eddy Buoyancy Fluxes Across Prograde Shelf/ Slope Fronts

Huaiyu Wei^{1,2} (b), Yan Wang^{1,2} (c), Andrew L. Stewart³ (b), and Julian Mak^{1,2} (c)

Parameterizing Eddy Buoyancy Fluxes Across Prograde Shelf/Slope Fronts Using a Slope-Aware GEOMETRIC Closure

HUAIYU WEI⁽⁰⁾,^{a,b} YAN WANG⁽⁰⁾,^{a,b} AND JULIAN MAK⁽⁰⁾,^{b,c}

most of the following is Huaiyu's PhD work (currently post-doc at UCLA)

うして ふぼう ふほう ふほう ふしつ

Baroclinic simulation over slopes

 wind forced simulation in MITgcm (2km resolution)

 \rightarrow downwelling favourable wind forcing

 \rightarrow strong jet along shelf break

 \rightarrow eddies on and off shelf have different length-scales ($\sim L_d$) and different properties

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Q. how to parameterise?

Parameterisation

Gent–McWilliams (GM) scheme:

$$\overline{u'b'} = -\kappa_{\rm gm} \nabla \overline{b}$$

 \rightarrow this one is really an **eddy-induced advection**

 \rightarrow flattens isopycnals, parameterisation of **form stress**

(resembles but is not exactly thickness diffusion)

Gent & McWilliams (1990); Gent et al. (1995)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

widely used in ocean GCMs, many good things about it

 \rightarrow positive-definite sink of APE

 \rightarrow reduces spurious deep convection in models

Parameterisation

Gent-McWilliams (GM) scheme:

$$\overline{u'b'} = -\kappa_{\rm gm} \nabla \overline{b}$$

 \rightarrow this one is really an **eddy-induced advection**

 \rightarrow flattens isopycnals, parameterisation of **form stress**

(resembles but is not exactly thickness diffusion)

Gent & McWilliams (1990); Gent et al. (1995)

widely used in ocean GCMs, many good things about it

 \rightarrow positive-definite sink of APE

 \rightarrow reduces spurious deep convection in models

• eddy energy $E \leftrightarrow$ eddy activity, so

$$\kappa_{\rm gm} = \kappa_{\rm gm}(f(E),\ldots)$$
 ?

 \rightarrow mixing length theory $\Rightarrow \kappa_{\rm gm} \sim \sqrt{E}$ (e.g. Eden & Greatbatch, 2008; Jansen *et al.*, 2015)

GEOMETRIC framework

▲□▶▲圖▶▲圖▶▲圖▶ 圖 の�?

GEOMETRIC framework

Under QG dynamics, mean equation may be written as

$$\frac{\partial \overline{u}}{\partial t} + f(\overline{u}) = \nabla \cdot \mathbf{E}, \qquad \mathbf{E} = \begin{pmatrix} -M+P & N & 0\\ N & M+P & 0\\ -S & R & 0 \end{pmatrix},$$

rank 2 tensor E encodes all fluctuation quantities

$$\begin{split} M &= \frac{1}{2} \overline{v'^2 - u'^2}, \quad N = \overline{u'v'}, \\ P &= \frac{1}{2N_0} \overline{b'^2}, \\ R &= \frac{f_0}{N_0^2} \overline{u'b'}, \quad S &= \frac{f_0}{N_0^2} \overline{v'b'}, \end{split}$$

 \rightarrow Eliassen–Palm flux tensor

Q. parameterise in a symmetry-preserving way?

Marshall et al. (2012); Maddison & Marshall (2013) [see also Hoskins et al. (1983)]

<□> <@> < E> < E> = E = のへで

Parameterisation: GEOMETRIC

Figure: Demonstration of eddy variance ellipses for Eady problem (v' and b' here).

- consider geometric parameters relating to eddy variance ellipses \rightarrow anisotropy parameters $\gamma_{b,m}$
 - \rightarrow angle parameters $\phi_{b,m}$

• note ϕ_m relates to actual eddy shape (cf. Tamarin *et al.*, 2016)

 $\rightarrow \phi_b$ does not, but the vertical angle parameter $\tan 2\phi_t = \gamma_b \tan 2\lambda$ does (e.g. Youngs *et al.*, 2017)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Parameterisation: GEOMETRIC

$$M = \frac{1}{2}\overline{v'^2 - u'^2} = -\gamma_m E \cos 2\phi_m \cos^2 \lambda, \quad N = \overline{u'v'} = \gamma_m E \sin 2\phi_m \cos^2 \lambda,$$
$$P = \frac{1}{2N_0}\overline{b'^2} = E \sin^2 \lambda,$$
$$R = \frac{f_0}{N_0^2}\overline{u'b'} = \gamma_b \frac{f_0}{N_0} E \cos \phi_b \sin 2\lambda, \quad S = \frac{f_0}{N_0^2}\overline{v'b'} = \gamma_b \frac{f_0}{N_0} E \sin \phi_b \sin 2\lambda,$$

with geometric parameters

$$\gamma_m = \frac{\sqrt{M^2 + N^2}}{K}, \qquad \gamma_b = \frac{N_0}{2f_0}\sqrt{\frac{R^2 + S^2}{KP}},$$
$$\sin 2\phi_m = \frac{N}{\sqrt{M^2 + N^2}}, \qquad \sin \phi_b = \frac{S}{\sqrt{R^2 + S^2}},$$
$$\frac{K}{E} = \cos^2 \lambda, \quad \frac{P}{E} = \sin^2 \lambda, \quad \tan^2 \lambda = \frac{P}{K}.$$

Marshall et al. (2012); Maddison & Marshall (2013)

◆□▶ ◆課▶ ◆注▶ ◆注▶ ─注 ─のへぐ

GEOMETRIC framework

GM scheme close for buoyancy fluxes

$$\begin{split} R &= \frac{f_0}{N_0^2} \overline{u'b'} = \gamma_b \frac{f_0}{N_0} E \cos \phi_b \sin 2\lambda, \\ S &= \frac{f_0}{N_0^2} \overline{v'b'} = \gamma_b \frac{f_0}{N_0} E \sin \phi_b \sin 2\lambda. \end{split}$$

▶ $\|\mathbf{E}\|^2 \le E$, tensor may be bounded in terms of eddy energy, and bound implies

イロト イポト イヨト イヨト

$$\kappa_{\rm gm} = \frac{\alpha E}{|\nabla \bar{b}|^2} \frac{(\partial \bar{b}/\partial z)^{1/2}}{|\nabla \bar{b}|^2} \equiv \frac{\alpha E}{M^2} \frac{N}{M^2} \; .$$

► $\alpha \sim \gamma_b \sin 2\lambda(\cos \phi_b, \sin \phi_b)$ is **non-dimensional** and $|\alpha| \leq 1$! → eddy efficiency parameter, **tunable** in parameterisations → closed by including a prognostic eddy energy budget for *E*

Marshall et al. (2012); Maddison & Marshall (2013); Mak et al. (2017, 2018, 2022a,b)

Parameterisation: GEOMETRIC

get eddy saturation (mathematical reasons for this, ask me if interested)

Parameterisation: GEOMETRIC

 reduces sensitivity of ocean heat content in 'realistic' model (NEMO ORCA2 here, but 'works' also in ORCA1)

Mak *et al.* (2022a)

GEOMETRIC over slopes (Wei, et al., 2022)

- diagnosed diffusivity 'suppressed' over slope region
 - → least-squares type fitting for an over-determined system (Bachman & Fox-Kemper, 2013)
 - suppression function fitted as

$$\mathcal{F}_{\text{GEOM}}(S) = \frac{1}{\mu_1 S^{\mu_2} + 1}$$

GEOMETRIC over slopes (Wei, et al., 2024)

suppressed GEOMETRIC ok from diagnostics, but in prognostic runs?

GEOMETRIC over slopes (Wei, et al., 2024)

relative errors of new variant is lowest

 \rightarrow nonlinear feedbacks, $\kappa_{\rm gm}$ too large over shelves has effect over the domain via a 'pivot' mechanism

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Summary

introduced GEOMETRIC framework

 \rightarrow parameterisation in terms of geometric parameters

- \rightarrow a framework for analysing eddy-mean interactions
- \rightarrow key role of the α eddy efficiency parameter
- ► suppression of eddy-mean interaction over slopes from simulations → can be represented through suppression of α (Wei *et al.*, 2022)
 - \rightarrow functions reasonably well in prognostic calculations (Wei et al., 2024)
 - \rightarrow ongoing work to see impacts in global models
 - ightarrow recent experimental evidence for suppression of lpha (Cheng et al., 2025)

▲ロト ▲ 帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q (~

Part 2: mechanism for slope suppression

PHYSICAL REVIEW FLUIDS 9, 083905 (2024)

Editors' Suggestion

Edge-wave phase shifts versus normal-mode phase tilts in an Eady problem with a sloping boundary

イロト (得) (ヨト (ヨト) ヨー のくぐ

J. Mak 0 N. Harnik E. Heifetz G. Kumar E. Q. Y. Ong

focus on linear instability of (modified) Eady problem

Recap: suppression over slopes

suggested suppression is

$$\kappa_{\rm gm} = \alpha \mathcal{F}_{\rm GEOM}(S) E \frac{N}{M^2}, \qquad \mathcal{F}_{\rm GEOM}(S) = \frac{1}{\mu_1 S^{\mu_2} + 1},$$

• from simulation results, it's not *E* or N/M^2 that are suppressed, so

 $\alpha \mapsto \alpha \mathcal{F}_{\text{GEOM}}(S)$?

うして ふぼう ふほう ふほう ふしつ

Q. which part of $\alpha \sim \gamma_b \sin 2\lambda(\cos \phi_b, \sin \phi_b)$ is being suppressed? Q. why? mechanisms?

- consider linear instability point of view
 - \rightarrow modified Eady problem with a slope

figure inspired from Chen et al. (2020)

The equation

standard QG, linear shear flow in vertical, $u = Ue_x = \Lambda z/H$, be wise and linearise:

$$\begin{pmatrix} \frac{\partial}{\partial t} + \Lambda z \frac{\partial}{\partial x} \end{pmatrix} \left(\nabla^2 \psi + \frac{f_0^2}{N_0^2} \frac{\partial^2 \psi}{\partial z^2} \right) = 0, \qquad z \in (-H, H),$$

$$\begin{pmatrix} \frac{\partial}{\partial t} + \Lambda \frac{\partial}{\partial t} \end{pmatrix} \frac{\partial \psi}{\partial t} - \frac{\Lambda}{2} \frac{\partial \psi}{\partial t} = 0, \qquad z = H.$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

The equations

sensible non-dimensionalisation (!!)

$$\begin{split} & \left(\frac{\partial}{\partial t} + z\frac{\partial}{\partial x}\right) \left(\nabla^2 \psi + F^2 \frac{\partial^2 \psi}{\partial z^2}\right) = 0, \qquad \qquad z \in (-1,1), \\ & \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial x}\right) \frac{\partial \psi}{\partial z} - \frac{\partial \psi}{\partial x} = 0, \qquad \qquad z = 1, \\ & \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x}\right) \frac{\partial \psi}{\partial z} - (1 - \delta) \frac{\partial \psi}{\partial x} = 0, \qquad \qquad z = -1, \end{split}$$

• with $F^2 = (fL/NH)^2$, and key parameter is

$$\delta = \left. \frac{\partial H_b}{\partial y} \right/ \left. \frac{\partial \rho / \partial y}{-\partial \rho / \partial z} \right.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The equations

- ► modal solutions, interior PV equations imply $\tilde{\psi}(z) = a \cosh \mu z + b \sinh \mu z, \qquad \mu^2 = (k^2 + l^2)/F^2$
- boundary conditions fix the constants *a* and *b*, leading to $(C = \cosh \mu)$ and $S = \sinh \mu$

$$0 = c^2 + \frac{\delta}{2\mu} \left(\frac{C}{S} + \frac{S}{C}\right)c + \frac{\delta^2}{4\mu^2} - \left(\frac{1 - \delta/2}{\mu} - \frac{C}{S}\right) \left(\frac{1 - \delta/2}{\mu} - \frac{S}{C}\right)$$

 \rightarrow solve analytically/numerically

Instability characteristics

イロト (得) (ヨト (ヨト) ヨー のくぐ

- reduced growth rates when $\delta < 0$ ('prograde' case)
- reduced bandwidth when $\delta > 0$, shuts off when $\delta \ge 1$
- Q. mechanism?

CRW mechanism

each CRW can interfere with each other

 \rightarrow domain of influence \sim Green's function

 \rightarrow can affect amplitude and propagation

phase-locking?

 \rightarrow from mean flow and other wave

 \rightarrow modal instability if phase-locked in constructively interfering configuration

イロト (得) (ヨト (ヨト) ヨー のくぐ

<□> <@> < E> < E> = E = のへで

- argument in terms of CRWs: $\delta < 0$ makes bottom wave **faster**
 - \Rightarrow bottom wave is such that $(U + c) \nearrow$
 - \Rightarrow for phase locking, want upper $(U c) \nearrow$, so upper $c \searrow$
 - \Rightarrow Rossby waves $c \sim k^{-1}$, so want a larger k...? (Chen *et al.*, 2020)

- standard Eady problem (no slope), 2d problem (l = 0)
 - ightarrow show normal-mode streamfunction $\psi = \tilde{\psi}(z) \mathrm{e}^{\mathrm{i}(kx-ct)}$
 - ightarrow leans into shear, diagnosed $\Delta\epsilon_{
 m eigen}=\pi/2$

▲ロト ▲ 帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q (~

- standard Eady problem (no slope), 2d problem (l = 0)
 - \rightarrow show normal-mode streamfunction $\psi = \tilde{\psi}(z) e^{i(kx-ct)}$
 - ightarrow leans into shear, diagnosed $\Delta\epsilon_{
 m eigen}=\pi/2$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Q. does the **phase-tilt** change with δ ?

- standard Eady problem (no slope), 2d problem (l = 0)
 - \rightarrow show normal-mode streamfunction $\psi = \tilde{\psi}(z) e^{i(kx-ct)}$
 - ightarrow leans into shear, diagnosed $\Delta\epsilon_{
 m eigen}=\pi/2$

- Q. does the **phase-tilt** change with δ ?
- Q. is the normal-mode phase-tilt even the right thing to look at, since we are talking about CRWs which are **edge-waves**?

Figure: Streamfunction eigenfunction of most unstable mode in standard Eady problem.

• eigenfunction as a superposition of CRWs, $\psi = \psi_T + \psi_B$?

 \rightarrow combination, would like it in edge-wave basis $\psi_{T,B}$ or $q_{T,B}$

Q. normal-mode **phase-tilt** is $\pi/2$, but is it really $\pi/2$ in the edge-waves **phase-shift**?

イロト (得) (ヨト (ヨト) ヨー のくぐ

• suppose
$$\tilde{\psi} = \tilde{\psi}_T + \tilde{\psi}_B$$
, and that $\tilde{q} = \tilde{q}_T + \tilde{q}_B$

modal solutions:

$$\tilde{q} = -\mu^2 \tilde{\psi} + \frac{\partial^2 \tilde{\psi}}{\partial z^2},$$

with bcs (cf. Davies & Bishop, 1994, no buoyancy perturbation on other boundary)

$$\left. \frac{\partial \tilde{\psi}_T}{\partial z} \right|_{z=-1} = 0, \qquad \left. \frac{\partial \tilde{\psi}_B}{\partial z} \right|_{z=+1} = 0$$

 suppose we demand localised PV signature from edge-waves with (δ is the Dirac δ-distribution)

$$\tilde{q}_B = \hat{q}_B(t)\hat{\delta}(z+1), \qquad \tilde{q}_T = \hat{q}_T(t)\hat{\delta}(z-1),$$

then from the Green's function we have

$$ilde{\psi}_B = -\hat{q}_B rac{\cosh\mu(1-z)}{\mu\sinh 2\mu}, \qquad ilde{\psi}_T = -\hat{q}_T rac{\cosh\mu(1+z)}{\mu\sinh 2\mu}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

► take previous thing, with $\hat{q}_T = T e^{i\epsilon_T}$ and $\hat{q}_B = B e^{i\epsilon_B}$, shove it into linearised EOM, tedious algebra gives

$$\begin{aligned} \frac{1}{T} \frac{\partial T}{\partial t} &= +\frac{k}{\mu \sinh 2\mu} \frac{B}{T} \sin \Delta \epsilon, \\ \frac{1}{B} \frac{\partial B}{\partial t} &= -\frac{k(1-\delta)}{\mu \sinh 2\mu} \frac{T}{B} \sin \Delta \epsilon, \\ -\frac{1}{k} \frac{\partial \epsilon_T}{\partial t} &= +\left[1 - \frac{1}{\mu \sinh 2\mu} \left(\cosh 2\mu + \frac{B}{T} \cos \Delta \epsilon\right)\right], \\ -\frac{1}{k} \frac{\partial \epsilon_B}{\partial t} &= -\left[1 - \frac{(1-\delta)}{\mu \sinh 2\mu} \left(\cosh 2\mu - \frac{T}{B} \cos \Delta \epsilon\right)\right], \end{aligned}$$

▲ロト ▲ 帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q (~

• $\Delta \epsilon = \epsilon_T - \epsilon_B$, edge-wave phase-shift $\rightarrow \Delta \epsilon > 0$ means the top *lags* bottom

• more illuminating if written in terms of amplitude ratio $\tan \gamma = T/B$ and phase shift:

$$\frac{\partial \gamma}{\partial t} = \frac{k}{\mu \sinh 2\mu} \sin \Delta \epsilon (\cos 2\gamma + \delta \sin^2 \gamma),$$

$$\frac{\partial \Delta \epsilon}{\partial t} = \frac{2k}{\mu \sinh 2\mu} \left[\left(1 - \frac{\delta}{2} \right) \cosh 2\mu - \mu \sinh 2\mu + \left(\frac{1}{\sin 2\gamma} - \frac{\delta}{2} \tan \gamma \right) \cos \Delta \epsilon \right].$$

 \rightarrow analysis of phase portraits, related to transient/non-modal growth

 \rightarrow synchronised growth/decay related to modal instabilities, or fixed points of the system

▲ロト ▲ 帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q (~

→ bifurcations (Hopf bifurcation here...?)

Figure: Phrase portrait for the case of $\delta = +0.5$, $\delta = 0$, and $\delta = -0.5$.

► $\delta < 0$ is where bottom wave is stronger (B > T) $\rightarrow \gamma = \arctan(T/B) < \pi/4$, i.e. B < T, consistent, and vice-versa \rightarrow in fact, for synchronised growth, we should have

$$\left|\frac{1}{\tan\gamma}\right| = \left|\frac{B}{T}\right| = \sqrt{1-\delta} ,$$

▲ロト ▲ 帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q (~

▶ BUT $\Delta \epsilon \neq \pi/2$ (not remotely close!)

Figure: Edge-wave phase-shift vs normal-mode phase-tilt.

mutual interaction matters!

 \rightarrow in terms of mutual wave propagation, and constructive interference

 $\rightarrow \pi/2$ is for optimal constructive interference, but not necessarily optimal for phase-locking (joint consideration required)

•
$$\Delta \epsilon_{\text{eigen}} = \pi/2$$
 is a phase-tilt

Figure: Amplitude ratio and edge-wave phase-shift over parameter space.

- amplitude ratio exactly as predicted varying with δ, and physically consistent (δ < 0 has B > T)
- phase shifts expected for fixed δ varying k
 - \rightarrow in phase for *k* small, because interaction strong (and vice-versa)
- explanations just in terms of phase-locking incomplete

► strength of interaction \Rightarrow phase shift and phase locking $\rightarrow \delta \searrow -\infty, B \nearrow$, interaction \nearrow , can offset by $k \nearrow$

Figure: Amplitude ratio and edge-wave phase-shift over parameter space, from (left) edge-waves and (right) eigenfunction itself.

イロト (得) (ヨト (ヨト) ヨー のくぐ

• $\Delta \epsilon_{\text{eigen}}$ as efficiency for APE extraction? (dubious)

Figure: Schematic for δ and its effects on the edge-waves.

GEOMETRIC framework and links with CRWs?

Figure: Demonstration of eddy variance ellipses for Eady problem (v' and b' here).

▶ for l = 0, i.e. no meridional variation, u' = 0, and so R = N = 0 while $M^2 = K$, and so

$$\gamma_m=1, \quad \phi_m=0, \quad \phi_b=\pm rac{\pi}{2}, \quad lpha=\pm \gamma_b \sin 2\lambda.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○の≪⊙

 $\blacktriangleright \phi_t \sim \Delta \epsilon$?

GEOMETRIC framework and links with CRWs

Figure: Geometric parameters for unstable modes.

 α very similar to the growth rate
 → proxy for eddy energy extraction?

 $\rightarrow \alpha$ suppression mainly from eddy anisotropy γ_b (not shown; expected?)

• ϕ_t seems to have some relation with $\Delta \epsilon$ (cf. barotropic case of Tamarin *et al.,* 2016)

 \rightarrow certainly better correlation than $\Delta\epsilon_{\rm eigen}$

イロト (得) (ヨト (ヨト) ヨー のくぐ

Summary

- cross slope suppression through inefficient instability mechanism?
 → really is α that is suppressed, suppression through eddy anisotropy γ_b
- Q. analytical links between GEOMETRIC and CRWs? (e.g. Tamarin *et al.*, 2016) → suggestive here numerically, did not attempt derivation (laziness...)
- ► edge-wave basis equivalent and physically more informative
 → most works talk edge-waves phase-shifts, but present results for normal-mode phase-tilts

 \rightarrow constructed system manually here, but can do this more generally (using orthogonality in e.g., pseudo-momentum; Held, 1985)

 \rightarrow reduction to dynamical system formulation

$Outlook \ ({\rm theory\ biased})$

- Eady problem is *PT* symmetric, and several others are obviously (!?) *PT* symmetric
 - \rightarrow Kelvin–Helmholtz (Qin et al., 2019)
 - \rightarrow (modified) Phillips problem (David et al., 2022)
 - \rightarrow Eady with β , Rayleigh problem (HD and MHD version), ...
- links with CRWs?
 - \rightarrow phase-locking \sim spontaneous \mathcal{PT} symmetry breaking?
 - \rightarrow bifurcations and stability boundaries \sim Krein collisions at exceptional points
- ? QM + QFT techniques applied to classical systems?

 \rightarrow reality of spectrum (e.g. various works by Mostafazadeh) \sim no phase-locking \sim sufficient conditions for stability (e.g. Arnol'd 1966 etc.)?

▲ロト ▲ 帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q (~

Figure: Questions?

(ロ)(母)(言)(言) 言)の(の

Parameterisation: GEOMETRIC

$\leftarrow \ \rightarrow \ \mathbf{C}$	08	https://forge.nemo-ocean.eu/nemo/nemo/-/releases	Ŧ	습	\odot	hn	۲	ë 111	එ	=
NEM® Explore							s	ign in	Regist	er
Q. Search or go to	.]	NEMO Workspace / Nemo / Releases								_
Project N Nemo ĉă Manage Ĉi Plan ⊲/> Code ¢Ø Build	> > >	NEMO 5.0-beta also brings with the first staps towards compability with hydrid GPU- the build system. With 5.0-beta, assthrough testing homer code is processed by Psyci release version of PSychone is accessful. Ultimately, this source-code transformation for directives in order to exploit paralielism. Achieving optimal performance by this method generating code which Will compile and run using GPU resources. At this staps, support underway to generalize the approach towards a wider range of platforms. Any beta testi NEMO 5.0 is the last version supporting both temporal schemes, MLF and RK3. Subseque Physics	GPU computing by lone but not transfo acility can be used' is not yet fully auto for Nvidia compile ing in support of thi uent versions will no	integrating F rmed) of all to identify co matic but the rs and hardw s goal is stro o longer inclu	OSyclone sou SETTE config omputational e transformat vare is more r ongly encoura ude MLF.	rce-ci juratii kerne ions v nature iged.	ode pr ons wi Is and vill be but p	ocessin th the la insert c capable rogress	i into est ompiler of is	
Deploy	×	OCEAN								
Releases Monitor La Analyze	>	Containing intransferization for an available of EdSet1 (m, est, 13%, t-32) Geometric is a new parameterization of eddy induced velocities formulated by Mars energetically consistent Gent-McWilliams parameterization. Light penatration scheme using 5 bands (10, est, 584) A new penetration scheme using 5 bands (10, est, 584) A new penetration scheme is implemented. It decomposes solar radiation into 5 ban MFS (Mediterranean Forecasting System) bulk formulae (10, HFS) BIOGEOCHEMISTRY TOP	shall et al. (2012) an	d Mak et al. tead of the c	(2018, 2022) original 3 bar	lt is I ds (R	oased GB).	on an		
() Help		 New vertical sinking scheme (<u>ln_sink_slg</u>) This scheme is the app developed in CDOCO to compute cadimentation for varies 	oue cinkina norticlo	e A comi Lo	aranalan adı	aatiu	flux	slaarithe	- in	

◆□▶ ◆課▶ ◆注▶ ◆注▶ ─注 ─のへぐ

 \rightarrow also in MITgcm and MOM6

 \mathcal{PT} symmetry

$$\begin{split} & \left(\frac{\partial}{\partial t} + z\frac{\partial}{\partial x}\right) \left(\nabla^2 \psi + F^2 \frac{\partial^2 \psi}{\partial z^2}\right) = 0, \qquad \qquad z \in (-1,1), \\ & \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial x}\right) \frac{\partial \psi}{\partial z} - \frac{\partial \psi}{\partial x} = 0, \qquad \qquad z = 1, \\ & \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x}\right) \frac{\partial \psi}{\partial z} - (1 - \delta) \frac{\partial \psi}{\partial x} = 0, \qquad \qquad z = -1, \end{split}$$

• with
$$F^2 = (fL/NH)^2$$
, and key parameter is

Observation:

- ▶ parity symmetry \mathcal{P} , $(x, y) \mapsto (-x, -y)$, then $(\partial_x, \partial_y) \mapsto (-\partial_x, -\partial_y)$, velocity $(u, v) \mapsto (-u, -v)$, so streamfunction $\psi \sim \int u \, dy \mapsto -(-\psi) = \psi$
- time reversal symmetry \mathcal{T} , $t \mapsto -t$, then $\partial_t \mapsto -\partial_t$, $\psi \mapsto -\psi$ by analogous argument
- system above is *PT* symmetric (even number of minus signs to every term under the *PT* mapping)

\mathcal{PT} symmetry (contd.)

• concept of \mathcal{PT} symmetry in quantum mechanics + QFT

- \rightarrow discrete symmetries
- operator \mathcal{H} is \mathcal{PT} symmetric if

$$(\mathcal{PT})\mathcal{H}^*(\mathcal{PT})^{-1} = \mathcal{H},\tag{1}$$

(* denotes complex and not Hermitian conjugate)

- interest in QM: *PT* systems can have a real spectrum even if they are non-Hermitian (e.g., Bender & Boettcher, 1998)
- Eady problem can be described as $c\phi = M\phi$ where

$$M = \frac{-1}{SC} \begin{pmatrix} \frac{\delta}{2\mu} C^2 & \left(1 - \frac{\delta}{2}\right) \frac{CS}{\mu} - C^2 \\ \left(1 - \frac{\delta}{2}\right) \frac{CS}{\mu} - S^2 & \frac{\delta}{2\mu} S^2 \end{pmatrix}, \quad (2)$$

and M is \mathcal{PT} symmetric (M is real and $\mathcal{PT} = -I$; latter from David *et al.*, 2022, PoF)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

\mathcal{PT} symmetry (contd.)

• if
$$c\phi = M\phi$$
, then for $\Delta = \text{Tr}(M)^2 - 4\text{Det}(M)$,

$$c^{2} - \operatorname{Tr}(M) + \operatorname{Det}(M) = 0, \qquad c = \frac{1}{2} \left(\operatorname{Tr}(M) \pm \sqrt{\Delta} \right)$$
(3)

▶ if
$$\Delta < 0$$
, $c_i \neq 0$ (i.e. instability)
 $\rightarrow c_r^+ = c_r^-$ since $\sqrt{\Delta}$ purely
imaginary

▶ if
$$\Delta > 0$$
, $c_i = 0$ (i.e. neutral)
 $\rightarrow c_r^+ \neq c_r^-$ since $\sqrt{\Delta}$ purely real
 \rightarrow collision at $\Delta = 0$, exceptional
points

 see David, Delplace & Venaille (2022), PoF for more

ヘロト 不聞 とく ヨン 不良 とう

æ