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Overview

0. shelf seas and slopes, baroclinic eddies, and it’s parameterisation

1. baroclinic turbulence over slopes

→ nonlinear simulations

→ parameterisations

→ GEOMETRIC: an eddy-mean interaction framework

→ parameterising suppression of fluxes

2. mechanism for slope suppression

→ linear instability point of view?

→ revisiting the (sloped) Eady problem

→ interpretation in terms of CRWs

→ GEOMETRIC analysis



Shelf seas + continental slopes

Figure: Locations of shelf seas denoted by the cyan colour. Taken from Wikipedia
(https://en.wikipedia.org/wiki/Continental shelf) made from NOAA data.

▶ exchange between shelves and open ocean important



Baroclinic eddies



Baroclinic eddies



Baroclinic instability
▶ baroclinic instability

→ reduces flow shear (⇒ reducing
tilt in isopycnal / isentrope)

→ fueled by available potential
energy

▶ also important for momentum transport

(figures from David Marshall)



Parameterisation

from Helene Hewitt (UKMO)



Part 1: baroclinic turbulence over slopes

▶ most of the following is Huaiyu’s PhD work (currently post-doc at UCLA)



Baroclinic simulation over slopes

▶ wind forced simulation
in MITgcm (2km
resolution)

→ downwelling
favourable wind forcing

→ strong jet along shelf
break

→ eddies on and off
shelf have different
length-scales (∼ Ld) and
different properties

Q. how to parameterise?



Parameterisation
▶ Gent–McWilliams (GM) scheme:

u′b′ = −κgm∇b

→ this one is really an eddy-induced
advection

→ flattens isopycnals, parameterisation
of form stress

(resembles but is not exactly thickness diffusion)

Gent & McWilliams (1990); Gent et al. (1995)

▶ widely used in ocean GCMs, many good things about it
→ positive-definite sink of APE
→ reduces spurious deep convection in models

▶ eddy energy E ↔ eddy activity, so

κgm = κgm(f (E), . . .) ?

→ mixing length theory ⇒ κgm ∼
√

E (e.g. Eden & Greatbatch, 2008; Jansen et al., 2015)
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GEOMETRIC framework

Under QG dynamics, mean equation may be written as

∂u
∂t

+ f (u) = ∇ · E, E =

−M + P N 0
N M + P 0
−S R 0

 ,

▶ rank 2 tensor E encodes all fluctuation quantities

M =
1
2

v′2 − u′2, N = u′v′,

P =
1

2N0
b′2,

R =
f0

N2
0

u′b′, S =
f0

N2
0

v′b′,

→ Eliassen–Palm flux tensor

Q. parameterise in a symmetry-preserving way?

Marshall et al. (2012); Maddison & Marshall (2013) [see also Hoskins et al. (1983)]
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Parameterisation: GEOMETRIC

Figure: Demonstration of eddy variance ellipses for Eady problem (v′ and b′ here).

▶ consider geometric parameters relating to eddy variance ellipses

→ anisotropy parameters γb,m

→ angle parameters ϕb,m

▶ note ϕm relates to actual eddy shape (cf. Tamarin et al., 2016)

→ ϕb does not, but the vertical angle parameter tan 2ϕt = γb tan 2λ does
(e.g. Youngs et al., 2017)



Parameterisation: GEOMETRIC

M =
1
2

v′2 − u′2 = −γmE cos 2ϕm cos2 λ, N = u′v′ = γmE sin 2ϕm cos2 λ,

P =
1

2N0
b′2 = E sin2 λ,

R =
f0

N2
0

u′b′ = γb
f0

N0
E cosϕb sin 2λ, S =

f0

N2
0

v′b′ = γb
f0

N0
E sinϕb sin 2λ,

with geometric parameters

γm =

√
M2 + N2

K
, γb =

N0

2f0

√
R2 + S2

KP
,

sin 2ϕm =
N√

M2 + N2
, sinϕb =

S√
R2 + S2

,

K
E

= cos2 λ,
P
E

= sin2 λ, tan2 λ =
P
K
.

Marshall et al. (2012); Maddison & Marshall (2013)



GEOMETRIC framework
▶ GM scheme close for buoyancy fluxes

R =
f0

N2
0

u′b′ = γb
f0

N0
E cosϕb sin 2λ,

S =
f0

N2
0

v′b′ = γb
f0

N0
E sinϕb sin 2λ.

▶ ∥E∥2 ≤ E , tensor may be bounded in
terms of eddy energy, and bound
implies

κgm = αE
(∂b/∂z)1/2

|∇b|2
≡ αE

N
M2 ,

▶ α ∼ γb sin 2λ(cosϕb, sinϕb) is non-dimensional and |α| ≤ 1 !

→ eddy efficiency parameter, tunable in parameterisations

→ closed by including a prognostic eddy energy budget for E

Marshall et al. (2012); Maddison & Marshall (2013); Mak et al. (2017, 2018, 2022a,b)



Parameterisation: GEOMETRIC

▶ get eddy saturation (mathematical reasons for this, ask me if interested)

Mak et al. (2017, 2018)



Parameterisation: GEOMETRIC
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▶ reduces sensitivity of ocean heat content in ‘realistic’ model
(NEMO ORCA2 here, but ‘works’ also in ORCA1)

Mak et al. (2022a)



GEOMETRIC over slopes (Wei, et al., 2022)

▶ diagnosed diffusivity ‘suppressed’
over slope region

→ least-squares type fitting for an
over-determined system (Bachman &

Fox-Kemper, 2013)

▶ suppression function fitted as

FGEOM(S) =
1

µ1Sµ2 + 1
.



GEOMETRIC over slopes (Wei, et al., 2024)

▶ suppressed GEOMETRIC ok from diagnostics, but in prognostic runs?



GEOMETRIC over slopes (Wei, et al., 2024)

▶ relative errors of new variant is lowest

→ nonlinear feedbacks, κgm too large over shelves has effect over the
domain via a ‘pivot’ mechanism



Summary

▶ introduced GEOMETRIC framework

→ parameterisation in terms of geometric parameters

→ a framework for analysing eddy-mean interactions

→ key role of the α eddy efficiency parameter

▶ suppression of eddy-mean interaction over slopes from simulations

→ can be represented through suppression of α (Wei et al., 2022)

→ functions reasonably well in prognostic calculations (Wei et al., 2024)

→ ongoing work to see impacts in global models

→ recent experimental evidence for suppression of α (Cheng et al., 2025)



Part 2: mechanism for slope suppression

▶ focus on linear instability of (modified) Eady problem



Recap: suppression over slopes

▶ suggested suppression is

κgm = αFGEOM(S)E
N

M2 , FGEOM(S) =
1

µ1Sµ2 + 1
,

▶ from simulation results, it’s not E or N/M2 that are suppressed, so

α 7→ αFGEOM(S) ?

Q. which part of α ∼ γb sin 2λ(cosϕb, sinϕb) is being suppressed?

Q. why? mechanisms?



In the presence of a slope...

▶ consider linear instability point of view

→ modified Eady problem with a slope

figure inspired from Chen et al. (2020)



The equation

▶ standard QG, linear shear flow in vertical, u = Uex = Λz/H, be wise
and linearise:(
∂

∂t
+ Λz

∂

∂x

)(
∇2ψ +

f 2
0

N2
0

∂2ψ

∂z2

)
= 0, z ∈ (−H,H),(

∂

∂t
+ Λ

∂

∂x

)
∂ψ

∂z
− Λ

H
∂ψ

∂x
= 0, z = H,(

∂

∂t
− Λ

∂

∂x

)
∂ψ

∂z
−
(
Λ

H
− N2

0

f0

∂Hb

∂y

)
∂ψ

∂x
= 0, z = −H.



The equations

▶ sensible non-dimensionalisation (!!)(
∂

∂t
+ z

∂

∂x

)(
∇2ψ + F2 ∂

2ψ

∂z2

)
= 0, z ∈ (−1, 1),(

∂

∂t
+

∂

∂x

)
∂ψ

∂z
− ∂ψ

∂x
= 0, z = 1,(

∂

∂t
− ∂

∂x

)
∂ψ

∂z
− (1 − δ)

∂ψ

∂x
= 0, z = −1,

▶ with F2 = (fL/NH)2, and key parameter is

δ =
∂Hb

∂y

/
∂ρ/∂y
−∂ρ/∂z



The equations

▶ modal solutions, interior PV equations imply

ψ̃(z) = a coshµz + b sinhµz, µ2 = (k2 + l2)/F2

▶ boundary conditions fix the constants a and b, leading to (C = coshµ
and S = sinhµ)

0 = c2 +
δ

2µ

(
C
S
+

S
C

)
c +

δ2

4µ2 −
(

1 − δ/2
µ

− C
S

)(
1 − δ/2
µ

− S
C

)

→ solve analytically/numerically



Instability characteristics
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▶ reduced growth rates when δ < 0 (‘prograde’ case)

▶ reduced bandwidth when δ > 0, shuts off when δ ≥ 1

Q. mechanism?



CRW mechanism

▶ each CRW can interfere with each other

→ domain of influence ∼ Green’s function

→ can affect amplitude and propagation
▶ phase-locking?

→ from mean flow and other wave

→ modal instability if phase-locked in constructively interfering
configuration



In the presence of a slope...

▶ argument in terms of CRWs: δ < 0 makes bottom wave faster

⇒ bottom wave is such that (U + c) ↗
⇒ for phase locking, want upper (U − c) ↗, so upper c ↘
⇒ Rossby waves c ∼ k−1, so want a larger k...? (Chen et al., 2020)
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In the presence of a slope...

▶ standard Eady problem (no slope), 2d problem (l = 0)

→ show normal-mode streamfunction ψ = ψ̃(z)ei(kx−ct)

→ leans into shear, diagnosed ∆ϵeigen = π/2

Q. does the phase-tilt change with δ?

Q. is the normal-mode phase-tilt even the right thing to look at, since we
are talking about CRWs which are edge-waves?
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Edge-wave basis

Figure: Streamfunction eigenfunction of most unstable mode in standard Eady problem.

▶ eigenfunction as a superposition of CRWs, ψ = ψT + ψB?

→ combination, would like it in edge-wave basis ψT,B or qT,B

Q. normal-mode phase-tilt is π/2, but is it really π/2 in the edge-waves
phase-shift?



Edge-wave basis

▶ suppose ψ̃ = ψ̃T + ψ̃B, and that q̃ = q̃T + q̃B

▶ modal solutions:

q̃ = −µ2ψ̃ +
∂2ψ̃

∂z2 ,

with bcs (cf. Davies & Bishop, 1994, no buoyancy perturbation on other boundary)

∂ψ̃T

∂z

∣∣∣∣
z=−1

= 0,
∂ψ̃B

∂z

∣∣∣∣
z=+1

= 0.

▶ suppose we demand localised PV signature from edge-waves with (δ̂ is

the Dirac δ-distribution)

q̃B = q̂B(t)δ̂(z + 1), q̃T = q̂T(t)δ̂(z − 1),

then from the Green’s function we have

ψ̃B = −q̂B
coshµ(1 − z)
µ sinh 2µ

, ψ̃T = −q̂T
coshµ(1 + z)
µ sinh 2µ

.



Edge-wave basis

▶ take previous thing, with q̂T = TeiϵT and q̂B = BeiϵB , shove it into
linearised EOM, tedious algebra gives

1
T
∂T
∂t

= +
k

µ sinh 2µ
B
T
sin∆ϵ,

1
B
∂B
∂t

= − k(1 − δ)

µ sinh 2µ
T
B
sin∆ϵ,

−1
k
∂ϵT

∂t
= +

[
1 − 1

µ sinh 2µ

(
cosh 2µ+

B
T
cos∆ϵ

)]
,

−1
k
∂ϵB

∂t
= −

[
1 − (1 − δ)

µ sinh 2µ

(
cosh 2µ− T

B
cos∆ϵ

)]
,

▶ ∆ϵ = ϵT − ϵB, edge-wave phase-shift

→∆ϵ > 0 means the top lags bottom



Edge-wave basis

▶ more illuminating if written in terms of amplitude ratio tan γ = T/B
and phase shift:

∂γ

∂t
=

k
µ sinh 2µ

sin∆ϵ(cos 2γ + δ sin2 γ),

∂∆ϵ

∂t
=

2k
µ sinh 2µ

[(
1 − δ

2

)
cosh 2µ− µ sinh 2µ+

(
1

sin 2γ
− δ

2
tan γ

)
cos∆ϵ

]
.

▶ two-dimensional dynamical system

→ analysis of phase portraits, related to transient/non-modal growth

→ synchronised growth/decay related to modal instabilities, or fixed
points of the system

→ bifurcations (Hopf bifurcation here...?)



Edge-wave basis
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Figure: Phrase portrait for the case of δ = +0.5, δ = 0, and δ = −0.5.

▶ δ < 0 is where bottom wave is stronger (B > T)
→ γ = arctan(T/B) < π/4, i.e. B < T, consistent, and vice-versa
→ in fact, for synchronised growth, we should have∣∣∣∣ 1

tan γ

∣∣∣∣ = ∣∣∣∣BT
∣∣∣∣ = √

1 − δ ,

▶ BUT ∆ϵ ̸= π/2 (not remotely close!)



Edge-wave basis

1.0

0.5

0.0

0.5

1.0

z

(a) ψT

0.0 0.2 0.4 0.6 0.8
2π/k

1.0

0.5

0.0

0.5

1.0

z ∆ε = 0.73 π

(b) ψB

0.0 0.2 0.4 0.6 0.8
2π/k

1.0

0.5

0.0

0.5

1.0

z ∆εeigen = 0.50 π

(c) ψ=ψT +ψB

Figure: Edge-wave phase-shift vs normal-mode phase-tilt.

▶ mutual interaction matters!

→ in terms of mutual wave propagation, and constructive interference

→ π/2 is for optimal constructive interference, but not necessarily
optimal for phase-locking (joint consideration required)

▶ ∆ϵeigen = π/2 is a phase-tilt



Edge-wave basis

2.0

1.5

1.0

0.5

0.0

0.5

1.0

δ

(a)

γ/π

0.20

0.25

0.30

0.00 0.25 0.50

(b)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
k

2.0

1.5

1.0

0.5

0.0

0.5

1.0

δ

(c)

∆ε/π

0.2

0.4

0.6

0.8

0.00 0.25 0.50 0.75 1.00

(d)

Figure: Amplitude ratio and edge-wave phase-shift over
parameter space.

▶ amplitude ratio exactly as
predicted varying with δ, and
physically consistent (δ < 0 has
B > T)

▶ phase shifts expected for fixed δ
varying k

→ in phase for k small, because
interaction strong (and
vice-versa)

▶ explanations just in terms of
phase-locking incomplete

▶ strength of interaction ⇒ phase shift and phase locking

→ δ ↘ −∞, B ↗, interaction ↗, can offset by k ↗



Edge-wave basis
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Figure: Amplitude ratio and edge-wave phase-shift over parameter space, from (left) edge-waves and (right)
eigenfunction itself.

▶ ∆ϵeigen as efficiency for APE extraction? (dubious)



Edge-wave basis

Figure: Schematic for δ and its effects on the edge-waves.



GEOMETRIC framework and links with CRWs?

Figure: Demonstration of eddy variance ellipses for Eady problem (v′ and b′ here).

▶ for l = 0, i.e. no meridional variation, u′ = 0, and so R = N = 0 while
M2 = K, and so

γm = 1, ϕm = 0, ϕb = ±π
2
, α = ±γb sin 2λ.

▶ ϕt ∼ ∆ϵ?



GEOMETRIC framework and links with CRWs
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Figure: Geometric parameters for unstable modes.

▶ α very similar to the growth rate

→ proxy for eddy energy
extraction?

→ α suppression mainly from
eddy anisotropy γb (not shown;

expected?)

▶ ϕt seems to have some relation
with ∆ϵ (cf. barotropic case of Tamarin et al.,

2016)

→ certainly better correlation
than ∆ϵeigen



Summary

▶ cross slope suppression through inefficient instability mechanism?

→ really is α that is suppressed, suppresion through eddy anisotropy γb

Q. analytical links between GEOMETRIC and CRWs? (e.g. Tamarin et al., 2016)

→ suggestive here numerically, did not attempt derivation (laziness...)

▶ edge-wave basis equivalent and physically more informative

→ most works talk edge-waves phase-shifts, but present results for
normal-mode phase-tilts

→ constructed system manually here, but can do this more generally
(using orthogonality in e.g., pseudo-momentum; Held, 1985)

→ reduction to dynamical system formulation



Outlook (theory biased)

▶ Eady problem is PT symmetric, and several others are obviously (!?)
PT symmetric

→ Kelvin–Helmholtz (Qin et al., 2019)

→ (modified) Phillips problem (David et al., 2022)

→ Eady with β, Rayleigh problem (HD and MHD version), ...

▶ links with CRWs?

→ phase-locking ∼ spontaneous PT symmetry breaking?

→ bifurcations and stability boundaries ∼ Krein collisions at
exceptional points

? QM + QFT techniques applied to classical systems?

→ reality of spectrum (e.g. various works by Mostafazadeh) ∼ no phase-locking ∼
sufficient conditions for stability (e.g. Arnol’d 1966 etc.)?



Figure: Questions?





Parameterisation: GEOMETRIC

▶ in NEMO 5.0

→ also in MITgcm and MOM6



PT symmetry

(
∂

∂t
+ z

∂

∂x

)(
∇2ψ + F2 ∂

2ψ

∂z2

)
= 0, z ∈ (−1, 1),(

∂

∂t
+

∂

∂x

)
∂ψ

∂z
− ∂ψ

∂x
= 0, z = 1,(

∂

∂t
− ∂

∂x

)
∂ψ

∂z
− (1 − δ)

∂ψ

∂x
= 0, z = −1,

▶ with F2 = (fL/NH)2, and key parameter is

Observation:
▶ parity symmetry P , (x, y) 7→ (−x,−y), then (∂x, ∂y) 7→ (−∂x,−∂y),

velocity (u, v) 7→ (−u,−v), so streamfunction
ψ ∼

∫
u dy 7→ −(−ψ) = ψ

▶ time reversal symmetry T , t 7→ −t, then ∂t 7→ −∂t, ψ 7→ −ψ by
analogous argument

▶ system above is PT symmetric (even number of minus signs to every
term under the PT mapping)



PT symmetry (contd.)
▶ concept of PT symmetry in quantum mechanics + QFT

→ discrete symmetries
▶ operator H is PT symmetric if

(PT )H∗(PT )−1 = H, (1)

(∗ denotes complex and not Hermitian conjugate)
▶ interest in QM: PT systems can have a real spectrum even if they are

non-Hermitian (e.g., Bender & Boettcher, 1998)

▶ Eady problem can be described as cϕ = Mϕ where

M =
−1
SC


δ

2µ
C2

(
1 −

δ

2

)
CS
µ

− C2(
1 −

δ

2

)
CS
µ

− S2 δ

2µ
S2

 , (2)

and M is PT symmetric (M is real and PT = −I; latter from David et al., 2022, PoF)



PT symmetry (contd.)

▶ if cϕ = Mϕ, then for ∆ = Tr(M)2 − 4Det(M),

c2 − Tr(M) + Det(M) = 0, c =
1
2

(
Tr(M)±

√
∆
)

(3)

▶ if ∆ < 0, ci ̸= 0 (i.e. instability)

→ c+r = c−r since
√
∆ purely

imaginary
▶ if ∆ > 0, ci = 0 (i.e. neutral)

→ c+r ̸= c−r since
√
∆ purely real

→ collision at ∆ = 0, exceptional
points

▶ see David, Delplace & Venaille
(2022), PoF for more


