参考文献

第一部 Christensen, U.R., Yuen, D.A. (1985) Layered convection induced by phase transitions, J. Geophys. Res., 90, 10291-10300.

Cottaar, S., Lekic V., (2016) Morphology of seismically slow lower-mantle structures, Geophs. J. Int., 207, 1122-1136

Fujita, K., Ogawa, M. (2009) Basaltic accumulation instability and chaotic plate motion in the earliest mantle inferred from numerical experiments, J. Geophys. Res. solid Earth, 114, B10402, doi:10.1029/2008JB006222

Ganne, J., Feng, X. (2017) Primary magmas and mantle termperatures through time, Geochem. Geophys. Geosyst., 18, 872–888, doi: 10.1002/2016GC006787 Gordon, R.G. (2000) Diffuse plate boundaries: strain rates, vertically averaged rheology, and comparisons with narrow plate boundaries and stable plate interiors, in “The history and dynamics of global plate motions” (eds., Richards, M,, Gordon, R.G., van der Hilst, R. D.), Geophys. Mon. Ser., 121, AGU, Washington DC, USA, 143- 160.

橋本敏明

  1. プレートの力学特性を変化させた場合のマントル対流の数値解析、東京

大学大学院総合文化研究科広域システム科学系、修士論文, 2018 年度

Hirose, K. et al. (1999) The fate of subducted basaltic crust in the Earth’s lower mantle, Nature,397, 53-56.

Holms, A. (1931) Radioactivity and Earth movements. Geolg. Soc. Glasgow, VIII (III), 559-606.

Kameyama, M., Ogawa, M. (2000) Transitions in thermal convection with strongly temperature-dependent viscosity in a wide box, Earth Planet. Sci. Lett., 180, 355- 367.

Keske, A.L. et al. (2015) Episodes of fluvial and volcanic activity in Mangala Valles, Mars, Icarus, 245, 333-347.

Nakagawa, T., Tackley, P.J. (2015), Influence of plate tectonic mode on the coupled thermochemical evolution of Earth’s mantle and core, Geochem. Geophys. Geosyst., 16, 3400–3413, doi:10.1002/2015GC005996.

Machetel, P., Weber, P. (1991) Intermittent layered convection in a model mantle with an endothermic phase change at 670 km, Nature, 350, 55-57.

Morota, T., et al. (2011) Timing and characteristics of the latest mare eruption on the Moon, Earth Planet. Sci. Lett., 302, 255-266.

Miyagoshi, T., M. Kameyama, and M. Ogawa (2015) Thermal convection and the convective regime diagram in super-Earths, J. Geophys. Res., 120, 1267-1278, doi:10.1002/2015JE004793.Miyagoshi, T., M. Kameyama, and M. Ogawa (2017) Extremely long transition phase of thermal convection in the mantle of massive super-Earths, Earth Planet Space, 69, 46, doi:10.1186/s40623-017-0630-6.

Miyagoshi, T., M. Kameyama, and M. Ogawa (2018) Effects of adiabatic compression on thermal convection in super-Earths of various sizes, Earth Planet Space, 70, 200, doi: 10.1186/s40623-018-0975-5

Miyagoshi, T., Kameyama, M., Ogawa, M. (2019) Tectonic plates in 3D mantle convection model with stress-history-dependent rheology, Nature, submitted

Ogawa, M. (2003) The Plate-Like regime of a numerically modeled thermal convection in a fluid with temperature-, pressure-, and stress-history-dependent viscosity, J. Geophys. Res., 108, B2, 2067, doi:10.1029/2000JB000069.

Ogawa, M. (2018) Magmatic differentiation and convective stirring of the mantle in early planets: the effects of the magmatism-mantle upwelling feedback, Geophys. J. Int., 215, 2144-2155.

Ogawa, M., G. Schubert, and A. Zebib (1991) Numerical simulations of three- dimensional thermal convection in a fluid with strongly temperature-dependent viscosity, J. Fluid Mech., 233, 299-328. Steinberger, B., and T. H. Torsvik (2012), A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces, Geochem. Geophys. Geosyst., 13, Q01W09, doi:10.1029/2011GC003808.

Stixrude, L., Lithgow-Bertelloni, C. (2011), Thermodynamics of mantle minerals-II. Phase equilibria, Geophys. J. Int., 184, 1180-1213.

Tachinami, C., M. Ogawa, and M. Kameyama (2014) Thermal convection of compressible fluid in the mantle of super-Earths, Icarus, 231, 377-384.

Wieczorek, M. (2015), Gravity and Topography of the terrestrial planets, Treatise in Geophys., vol. 10 (Planets and Moons; ed. Spohn, T.), 153-197, Elsevier, Amsterdam, Netherland.

Yanagisawa, T., Kameyama, M., Ogawa, M. (2016) Numerical studies on convective stability and flow pattern in three-dimensional spherical mantle of terrestrial planets, Geophys. J. Int., 206, 1526-1538, doi:10.1093/gji/ggw226.

Zhang, N., Parmentier, E.M., Liang, Y. (2013) A 3-D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: The importance of rheology and core solidification, J. Geophys. Res. Planets, 118, doi:10.1002/jgre.20121.

第二部 月 Andrew-Hanna, J.C. et al. (2013) Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry, Science, 339, 675-678.

Barboni et al. (2017) Eartly formation of the Moon 4.51 billion years ago, Science Adv., 3, e1602365

Borg, L.E. et al. (2019) Isotopic evidence for a young lunar magma ocean, Earth Planet. Sci. Lett., 523, 115706.

Bottke, W.F., Norman, M.D. (2017) The late heavy bombardment, Ann. Rev. Earth Planet. Sci.,45, 619-647.

Canup, R. (2004), Simulations of a late lunar-forming impact, Icarus, 168, 433-456.

Cuk, M., Stewart, S.T. (2012) Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning, Science, 338, 1047-1052

Dauphas N, Burkhardt C, Warren PH, Teng F-Z. (2014) Geochemical arguments for an Earth-like Moon-forming impactor. Phil. Trans. R. Soc. A 372: 20130244. http://dx.doi.org/10.1098/rsta.2013.0244

Evans, A. J., Andrews-Hanna, J. C., Head, J. W., III, Soderblom, J. M., Solomon, S. C., & Zuber, M. T. (2018). Reexamination of early lunar chronology with GRAIL data: Terranes, basins, and impact fluxes. Journal of Geophysical Research: Planets, 123, 1596–1617. https://doi.org/ 10.1029/2017JE005421

Hauri, E.H., et al. (2017) Origin and evolution of water in the Moon’s interior, Ann. Rev. Earth Planet. Sci., 45, 89-111

Hosono, N. et al. (2019) Terrestrial magma ocean origin of the Moon, Nature Geosci., 12, 418-423.

Kruijer, T.S. et al. (2015), Lunar tungsten isotopic evidence for the late veneer, Nature, 520, 534-537.

Ogawa, M. (2014) A positive feedback between magmatism and mantle upwelling in terrestrial planets: Implications for the Moon, J. Geophys. Res. Planet, 119, 2317- 2330, doi: 10.1002/2014JE004717, 2014.

Ogawa, M. (2018) The effects of magmatic redistribution of heat producing elements on the lunar mantle evolution inferred from numerical models that start from various initial states, Planet. Space Sci., 151, 43-55.

Rufu, R., Aharonson, O., Perets, H.B. (2017) A multible impact origin for the Moon, Nature Geosci.,10, 89-94.

Rufu, R., & Aharonson, O.(2019). Impact dynamics ofmoons within a planetary poten- tial. Journal of Geophysical.

Salmon, Julien & Canup, Robin. (2012). Lunar accretion from a Roche-interior fluid disk. Astrophysical Journal. 760. 10.1088/0004-637X/760/1/83.Spohn, T., Konard, W., Ziethe R. (2001) The Longevity of Lunar Volcanism: Implications of Thermal Evolution Calculations with 2D and 3D Mantle Convection Models, Icarus, 149, 54-65, doi: 10.1006/icar.2000.6514 Research: Planets, 124, 1008–1019. https://doi.org/10.1029/2018JE005798

Watters, R.R., et al. (2015) Global thrust faulting on the Moon and the influence of tidal stresses, Geology, 43, 851-854, doi:10.1130/G37120.1.

Weiss, B., Tikoo, S.M. (2014) The lunar dynamo, Science, 346, 1246753, 1-10.

Whitten, J.L., Head, J.W. (2015) Lunar cryptomeria: physical characteristics, distribution, and implications for ancient volcanism, Icarus, 247, 150-171.

火星 Bouvier, L.C. et al. (2018) Evidence for extremely rapid magma ocean crystallization and crust formation on Mars, Nature, 558, 586-589

Ehlmann, B. et al. (2011) Subsurface water and clay mineral formation during the early history of Mars, Nature, 479, 53-60, doi: 10.1016/j.epsl.2008.03.062

Elkins-Tantion, L.T. (2008) Linked magma ocean solidification and atmospheric growth for Earth and Mars, Earth Planet. Sci. Lett., 271, 181-191 .

Grott, M. et al. (2013) Long-term evolution of the Martian crust-mantle system, Space Sci. Rev., 174, 49-111.

Keske, A.L. et al. (2015) Episodes of fluvial and volcanic activity in Mangala Valles, Mars, Icarus, 245, 333-347.

Ogawa, M., and T. Yanagisawa (2012) Two-dimensional numerical studies on the effects of water on Martian mantle evolution induced by magmatism and solid-state mantle convection, J. Geophys. Res. planet, 117, E06004, doi:10.1029/2012JE004054.

Senshu, H., K. Kuramoto, and T. Matsui (2002) Thermal evolution of a growing Mars, J. Geophys. Res., 107(E12), 5118, doi:10.1029/2001JE001819.

Solomon, S.C., et al. (2005) New perspectives on ancient Mars, Science, 307, 1214- 1220.

Tang, H., Dauphas, N. (2014) 60 Fe- 60 Ni chronology of core formation in Mars, Earth Planet. Sci. Lett., 390, 264-274.

Walsh, K.J., Levinson, H.F. (2019) Planetesimals to terrestrial planets: Collisional evolution amidst a dissipating gas disk, Icarus 329, 88-100

金星 Binschadler, D., Schubert, G., Kaula, W. (1992) Coldspots and hotspots: global tectonicsand mantle dynamics of Venus, J. Geophys. Res., 97, 13495-13532.

Brown, C.D., Grimm, R.E. (1999) Recent tectonic and lithospheric thermal evolution of Venus, Icarus, 139, 40-48.

Hansen, V. L., & López, I. (2018). Mapping of geologic structures in the Niobe- Aphrodite map area of Venus: Unraveling the history of tectonic regime change. Journal of Geophysical Research: Planets, 123, 1760–1790. https://doi.org/10.1029/2018JE005566

Ivanov, M.A., Head, J.W. (2011) Global geological map of Venus, Planet. Space Sci., 59, 1559-1600.

Johnson, C. L., and M. A. Richards (2003) A conceptual model for the relationship between coronae and large-scale mantle dynamics on Venus, J. Geophys. Res., 108(E6), 5058, doi:10.1029/2002JE001962.

Ogawa, M., and T. Yanagisawa (2014) Mantle evolution in Venus due to magmatism and phase transitions: From punctuated layered convection to whole-mantle convection,

J. Geophys. Res. planet, 119, 867-883, doi:10.1002/2013JE004586. 地球

Bono, R.K. et al. (2019) Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity, Nature Geosci., 12, 143-147

Coffin, M.F., Eldholm, O. (1994) Large Igneous Provinces: crustal structure, dimensions and external consequences, Rev. Geophys., 32, 1-36.

Cottaar, S., Lekic V., (2016) Morphology of seismically slow lower-mantle structures, Geophs. J. Int., 207, 1122-1136

Hoffman, P. (1989) Precambrian geology and tectonic history of North America, in “The geology of North America vol. A The geology of North Americal-An overview”, Geolog. Soc. Amer. 447-512.

Li, X.Z., et al. (2008) Assembly, configuration, and break-up history of Rodinia: A synthesis, Precambrian Research, 160, 179-210

Ogawa, M. (2014) Two-stage evolution of the Earth’s mantle inferred from numerical simulation of coupled magmatism-mantle convection system with tectonic plates, J. Geophys. Res. Solid Earth, 119, 2462-2486, doi:10.1002/2013JB010315.

Seton, M., et al. (2012) Global continental and ocean basin reconstructions since 200 Ma, Earth-Sci. Rev.,113, 212-270.

Takeno, S. et al. (2010), The structure of iron in Earth's inner core, Science, 330, 359- 361

Utsunomiya et al. (2007) History of the Pacific superplume: implications for Pacific paleogeography sincd the late Proterozoic, in “Superplumes: beyond plate tectonics” (eds. Yuen D.A., Maruyama, S., Karato, S., Windley, B.), Springer, Dordrecht, the Netherland, 363-402.

Willbold, M. et al. (2015) Tungsten isotope composition of the Acasta gneiss complex, Earth Planet. Sci. Lett., 419, 168-177.

水星 Byrne, P.K. et al. (2014) Mercury’s global contraction much greater than earlier estimates, Nature Geosci.,7, 301-307.

Head, J.W. et al (2009) Volcanism on Mercury: evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains, Earth Planet. Sci. Lett., 285, 227-242

Head, J.W. et al. (2011) Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER, Science, 333, 1853-1856.

Ogawa, M. (2016) Evolution of the interior of Mercury influenced by coupled magmatism-mantle convection system and heat flux from the core, J. Geophys. Res., 121, 118-136, doi:10.1002/2015JE004832.

Weider, S.Z. et al. (2015) Evidence for geochemical terranes on Mercury: global mapping of major elements with MESSENGER’s X-Ray Spectrometer, Earth Planet. Sci. Lett., 416, 109-120.

Winslow, R. M., et al. (2014), Mercury’s surface magnetic field determined from proton-reflection magnetometry, Geophys. Res. Lett., 41, doi:10.1002/ 2014GL060258.

Ogawa, M. (2019) Magmatic differentiation and convective stirring of the mantle in early planets 2: Effects of the properties of mantle materials, submitted to Geophys. J. Int.

Zuber, M.T. et al. (2012) Topographyof the northern hemisphere of Mercury from MESSENGER laser altimetry, Science, 336, 217-220 ==