/地球流体セミナー
/講演資料一覧
/2003-09-08/
 
シアー不安定の定性的な説明・擬運動量
 
伊賀 啓太(九大・応用力学研究所) 
2003 年 9 月 9 日
 
講演ビデオを見るには, 以下の各スライド画像をクリックし, 
左上に表示される「ビデオ開始」をクリックしてください.
 
 
 | 
タイトルぺージ 
 |  
 
  
 
 | 
固有値問題の解を物理的に理解したい 
 |  
 
  
 
 | 
例題:  
基本場の渦位境界である y = -L において波形の変移を考える.
-  流体粒子の全渦位が保存されることを考慮して, 擾乱の渦位を考える.
 -  パターンは x 正方向に伝播
  
 |  
 
  
 
 | 
例題:  
基本場の渦位境界である y = -L において波形の変移を考える.
-  流体粒子の全渦位が保存されることを考慮して, 擾乱の渦位を考える.
 -  パターンは x 負方向に伝播
  
 |  
 
  
 
 | 
擾乱が強め合う場合の定性的説明 
 |  
 
  
 
 | 
擾乱が強め合う条件 
-  互いに逆方向に伝播するような擾乱の組がある場合に強め合う. 
  
 |  
 
  
 
 | 
擾乱が強め合う条件 (つづき) 
強め合うのに都合のよい位置関係を保つには…
-  擾乱は相対的に逆方向に伝播する.
 -  基本場も含めて同じ速度で伝播する.
  
基本場も含めて同じ速度で伝播しないと, 強め合う位置関係を維持できない.
 |  
 
  
 
 | 
不安定が起こるのは… 
-  中立波の分散曲線が交わる
 -  位相速度はその波が存在する場所の流速の中間値
-  擾乱が振幅が空間的に広がりをもつ場合,
     「波が存在する場所の流速」をどう評価するか?
  
  
 |  
 
  
 
 | 
「その波が存在する場所の流速」をどう評価するか? 
-  はっきり決められない場合もある
 -  別の判定条件を考える : 擬運動量の導入
  
 |  
 
  
 
 | 
擬運動量の導入  
 |  
 
  
 
 | 
浅水系の擬運動量 
 |  
 
  
 
 | 
擬運動量の性質にともなう制約条件 
 |  
 
  
 
 | 
擬運動量が 0 となる場合  
正と負の擬運動量を持つ波の対を考える.
-  中立波 : 正と負の擬運動量を持つ波の重ね合わせ
 -  不安定波 : 正と負の擬運動量を持つ波がある位相関係を保って存在
-  負の擬運動量を持つ波から正の擬運動量を持つ波へ向かう
     擬運動量フラックスがあるとする
 -  擬運動量の大きさを強め合う = 振幅を強め合う
  
  
 |  
 
  
 
 | 
その他の保存量 : 擬エネルギー 
 |  
 
  
 
 | 
複素共役の和: 擬運動量保存の導出 
 |  
 
  
 
 | 
複素共役の差: 擬運動量保存の導出 
-  擬運動量 × cr な量(擬エネルギー)が存在する.
 -  擬運動量は保存量なので, 擬エネルギーも保存量.
  
 |  
 
  
 
 | 
擬エネルギーを用いた解釈 
U が一定の場合
浅水系の場合も定義できる.
 |  
 
  
| 
 | 
参考文献 
-  Drazin, P. G., and W. H.  Reid, 1981:Hydrodynamic stability,
     Cambridge Univ. Press, pp. 527.
 -  Satomura, T., 1981: An investigation of shear onstability in a
     shallow water. J. Met. Soc. Japan, 59, 148-167.
 -  Hayashi, Y.-Y., and W. R. Young, 1987: Stable and unstable shear
     modes on rotating parallel flow in shallow water.
     J. Fluid. Mech., 184, 477-504.
  
 |  
 
  
Odaka Masatsugu 
2003-09-09
 |