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(i) The observed circulation



observed mean meridional circulation
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(ii) The troposphere without eddies
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westerly jet much too strong :            

temperature gradient too large



(iii) Tropospheric eddies and waves



Stationary Rossby waves



Typical surface pressure analysis



(iv) Baroclinic instability and synoptic eddies



Hence

A zonal flow is stable to inviscid, adiabatic, quasigeostrophic normal mode perturbations if

a. there is no change of sign of PV gradient within the fluid and

b. the system is bounded above and below by isentropic boundaries.

The Charney-Stern theorem. (does not apply to non-normal-mode growth).

Barocllinic instability

T̄ū JAN

lower boundary is not isentropicPV gradient (not shown) ∂q̄/∂y > 0 in interior



Barocllinic instability:the Eady problem

Simplest example, and relevant to the troposphere

1. Boussinesq (ρ = constant)

2. Inviscid, adiabatic flow on an f − plane (β = 0)

3. Uniform buoyancy frequency: N2 constant

4. Rigid upper and lower boundaries at z = ± 1

2
D, on which w = 0.

5. Balanced background zonal flow increasing linearly with height: u0 = Λz
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→ q ′ =
∂2ψ ′
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Look for separable modal, wave-like solutions ψ ′ = ReΦzeikx+ly−kct 
then

d2Φ
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where κ = k2 + l2 . Then Φ ∼ exp±Nκz/f0, or
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(boundary trapped).
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After much manuipulation, find
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internal radius of deformation
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short waves, κL < 2. 3994 : c2 > 0 : propagating boundary waves, no growth
long waves, κL > 2. 3994 : c2 < 0 : nonpropagating, exponential growth
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[James]

Im(ω) = k Im(c)



[Holton]

w ′T ′ > 0

v′T ′ is poleward

Note.:

Structure of fastest growing wave:







Baroclinic instability in the atmosphere:

Typical values in midlatitude troposphere
D ≃ 10km, N ≃ 1 × 10−2s−1, f0 ≃ 1. 0 × 10−4s−1, Λ ≃ 2.5 × 10−3s−1.
So the fastest growth rate is 6. 5 × 10−6s−1, → e-folding time 1. 5 × 105s ≃ 1. 8 days.
Wavenumber of the fastest growing wave is 1. 61f0/ND ≃ 1.61 × 10−6m−1,
giving wavelength 2π/k ≃ 3900 km. (At 450, corresponds to zonal wavenumber 7.)



(v)  Synoptic eddy transport



F, ∇ ⋅ F in troposphere
[Oort & Peixoto]
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F, ∇ ⋅ F in troposphere
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F divergent near (and at) surface;
generally convergent in middle and upper
troposphere





F, ∇ ⋅ F in troposphere
[Oort & Peixoto]

stationary waves in winter:
upward propagating from
surface and near-surface
sources

transient baroclinic eddies also
upward propagating, because

v′T ′ is poleward

F z = f v ′θ′

∂θ̄/∂z
> 0

note equatorward propagation
in upper troposphere



annual mean v′T ′ :
transient eddies dominate, but
stationary waves contribute in
northern hemisphere (especially winter)

[Oort& Peixoto]



annual mean u ′v′ :
transient eddies dominate

[Oort& Peixoto]

ALL EDDIES

TRANSIENTS
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Storm tracks – northern 

hemisphere
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homogeneous case u ′v′ = 0

EP, heat and momentum fluxes

(arrows show F)

Fy = −ρu ′v′ ; Fz = ρf v′θ′

∂θ̄/∂z

localized baroclinic zone on β-plane:
wave activity spreads out symmetrically;

u ′v′ ≠ 0

localized baroclinic zone on the sphere:
wave activity spreads out asymmetrically;

u ′v′ predominantly poleward



EQUATOR                               POLE

u ′v′
Maintenance of surface westerlies

column-integrated momentum budget:
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convergent)
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u' v'

τs

W

(a)

(u'v')  balanced by fvy

fv balanced by surface stress

WARMING COOLING

EQ POLE

(b)

WARMINGCOOLING
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f

∂
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u ′v′

locally,

→ Ferrel cell

heat transport by Ferrel cell opposes
(but does not overcome) effects of
eddy heat flux
→ net poleward heat transport



u

z

momentum fluxes drive 
surface westerlies

heat fluxes reduce vertical 
shear

Whether eddies enhance or reduce upper tropospheric westerlies

depends on external factors, such as ratio of thermal relaxation rate to 

surface drag coefficient [Robinson, J Atmos Sci, 1991]
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(vi)  Variability:  Annular modes





Annular Modes

• Leading patterns of variability 
in extratropics of each 
hemisphere

• Strongest in winter but visible 
year-round in troposphere; 
present in “active seasons” in 
stratosphere

[Thompson and Wallace, 2000]



Lorenz & Hartmann

J. Atmos. Sci (2001); J. Clim (2003)
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