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(i) Quasigeostrophic equations and potential vorticity



Assumptions:

● Midlatitude “beta-plane” f = f0 + βy

● Ro = U/fL ≪ 1 → geostrophic balance

● βL/f0 ≪ 1 → geostrophic flow nondivergent → w ≃ 0

● At leading order ∂θ/∂z is function of z only (for consistent entropy budget)

Quasi-geostrophic transport of heat, momentum and potential vorticity

Hydrostatic equations with rotation
(log-p coordinates, f = 2Ω sinϕ):

∂u
∂t

+ u.∇u − fv = − ∂φ
∂x

+ G x

∂v
∂t

+ u ⋅ ∇v + fu = − ∂φ∂y
+ G y

∂θ
∂t

+ u ⋅ ∇θ = ρΠ −1J

∂u
∂x

+ ∂v
∂y

+ 1
ρ

∂
∂z

ρw = 0

∂φ
∂z

− κΠ
H

θ = 0
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Define background state

Θ0z , Φ0z = κ
H
∫

0

z

ΠΘ0 dz

Geostrophic flow:

− fvg = − ∂φ
∂x

; + fu = − ∂φ
∂y

∂ug

∂x
+
∂vg

∂y
= 0

ug = −
∂ψ
∂y

; vg =
∂ψ
∂x

; wg = 0

geostrophic streamfunction:

ψ = φ − Φz/f0

Hydrostatic balance

∂ψ
∂z

= κΠ
f0H

θ − Θ0z

→ thermal wind shear

f0
∂u
∂z

= − κΠ
f0H

∂θ
∂y

; f0
∂v
∂z

= κΠ
f0H

∂θ
∂x

0



Quasi-geostrophic equations 2

At next order,

Dgug − βyvg − f0va = Gx

Dgvg + βyug + f0ua = Gy

Dgθ + wa
∂Θ0

∂z
= ρΠ−1J

∂ua

∂x
+

∂va

∂y
+ 1

ρ
∂
∂z

ρwa  = 0

where Dg is derivative following geostrophic flow:

Dg ≡ ∂
∂t

+ u g
∂
∂x

+ vg
∂
∂y

and ua, va ,wa is the ageostrophic velocity

ua ,va,wa = u − ug , v − vg ,w

(1)

(2)

(3)



From these, we can derive
{∂2/∂x − ∂1/∂y + f0/ρ∂ρ × 3/Θ0,z/∂z}
the equation for quasigeostrophic potential vorticity, q :

→ D gq = X

where

q = f0 + βy + ∂v
∂x

− ∂u
∂y

+
f0

ρ
∂
∂z

ρ θ̃
Θ0,z

= f0 + βy + ∂2

∂x2
+ ∂ 2

∂y2
+ 1

ρ
∂
∂z

ρ
f0
2

N 2

∂
∂z

ψ

and

X = ∂Gy

∂x
− ∂Gx

∂y
+

f0

ρ
∂
∂z

ρ J
ΠΘ0,z

→ for conservative flow G = 0, J = 0, whence X = 0:
q is conserved following the geostrophic flow.



(ii) Wave activity conservation



PV fluxes and the Eliassen-Palm theorem
Consider small-amplitude motions on a steady, zonally-uniform basic state

ug, vg, w = Uy, z, 0, 0 ; θ = Θy, z; ψ = Ψy, z ; Qy, z

where

∂Ψ
∂y

= −U ; κΠ
H

∂θ
∂y

= −f∘
∂U
∂z

Qy, z = f0 + βy + ∂2Ψ
∂y2

+ 1
ρ

∂
∂z

ρf0
2

N2

∂Ψ
∂z

Write

ψ = Ψ + ψ′x, y, z, t

then v′ = ∂ψ′/∂x and

q′ = Δ2ψ′ =
∂ 2ψ′

∂x2
+

∂2ψ′

∂y 2
+ 1

ρ
∂
∂z

ρf0
2

N2

∂ψ′

∂z
.

so PV flux is

v′q′ =
∂ψ′

∂x

∂ 2ψ′

∂x2
+

∂2ψ′

∂y 2
+ 1

ρ
∂
∂z

ρf0
2

N2

∂ψ′

∂z



Consider v′q ′ :

(I)
∂ψ ′

∂x

∂2ψ ′

∂x2
= 1

2
∂
∂x

∂ψ ′

∂x

2

= 0 ;

(II)
∂ψ ′

∂x

∂2ψ ′

∂y2
= ∂

∂y

∂ψ ′

∂x

∂ψ ′

∂y
− ∂ψ ′

∂y

∂2ψ ′

∂x∂y

= ∂
∂y

∂ψ ′

∂x

∂ψ ′

∂y
− 1

2
∂
∂x

∂ψ ′

∂y

2

= ∂
∂y

∂ψ ′

∂x

∂ψ ′

∂y
;

(III)
∂ψ ′

∂x
1
ρ

∂
∂z

ρf0
2

N2

∂ψ ′

∂z
= 1

ρ
∂
∂z

ρf0
2

N2

∂ψ ′

∂x

∂ψ ′

∂z
− f0

2

N2

∂ψ ′

∂z

∂2ψ ′

∂x∂z

= 1
ρ

∂
∂z

ρf0
2

N2

∂ψ ′

∂x

∂ψ ′

∂z
−

f0
2

2N2

∂
∂x

∂ψ ′

∂z

2

= 1
ρ

∂
∂z

ρf0
2

N2

∂ψ ′

∂x

∂ψ ′

∂z
.



Therefore

ρv′q′ = ∇ ⋅ F

where

F = Fy , Fz 

= ρ ∂ψ′

∂x

∂ψ′

∂y
,
ρf0

2

N2

∂ψ′

∂x

∂ψ′

∂z

= −ρu′v′ , ρf0
v′θ ′

dΘ0/dz

F is known as the ELIASSEN-PALM flux.



then

∂A
∂t

+ ∇ ⋅ F = D

→ the ELIASSEN-PALM RELATION:
— a conservation law for zonally-averaged wave activity
whose density is A.. Note that D → 0 for conservative flow.

Define

A = ρ 1
2

q ′2/
∂Q

∂y
and D = ρv ′X ′/

∂Q

∂y
,

Linearizing the QGPV equation:

∂
∂t

+ U ∂
∂x

q′ + v ′ ∂Q

∂y
= X ′

multiply by q ′ and average:

∂
∂t

1
2

q ′2 + v ′q ′ ∂Q

∂y
= v′X′

F is a meaningful measure of the propagation of wave activity

y

z

.∆

.F > 0

The Eliassen-Palm theorem
For steady ∂A/∂t = 0, small amplitude, conservative D = 0 waves:

∇ ⋅ F = 0 : ρv ′q ′ = 0



(iii) Stability of zonal flows



Stability of zonal flows to QG perturbations: The Charney-Stern theorem

Charney & Stern, J. Atmos. Sci., 19, 159-172, (1962)

Integrate the EP relation:

∂
∂t
∫∫
R

A dy dz + ∮
C

F ⋅ n dl = ∫∫
R

D dy dz

over the domainR bounded by the surface.
Boundary fluxes:

at sides y = y1, y2, v = 0:

→ F ⋅ n = Fy = −ρu ′v′ = 0

at top and bottom:

F ⋅ n = Fz = ρf0
v′θ′

dΘ0/dz

which is nonzero if v′θ′ ≠ 0 . But if the upper and
lower boundaries are isentropic, then

θ ′ = 0 → F ⋅ n = 0

there.



Hence for
(i) conservative flow (no creation or dissipation of wave activity)
(ii) with isentropic upper and lower boundaries

(no flux through boundaries)

∂
∂t
∫∫
R

A dy dz = 0

→ globally integrated wave activity is conserved.
But sign of A depends on sign of ∂q̄/∂y :

A =
1

2
ρq ′2

∂q̄/∂y

Look for normal mode growth such that q ′2 = BtCy, z
(both B and C positive definite)

dB
dt
∫∫
R

1
2

Cy, z
∂q̄/∂y

dy dz = 0

If mean PV gradient is single-signed, dB/dt = 0 → no growth

Hence

A zonal flow is stable to inviscid, adiabatic, quasigeostrophic normal mode perturbations if

a. there is no change of sign of PV gradient within the fluid and

b. the system is bounded above and below by isentropic boundaries.

The Charney-Stern theorem. (does not apply to non-normal-mode growth).



(iv) PV transport and nonacceleration



Potential vorticity transport and the nonacceleration theorem

How do eddies influence the zonal mean circulation?
Take mean of QGPV equation

∂q̄

∂t
+ ∂

∂y
v ′q′ = X̄ .

Note (i) vg = ∂ψ/∂x = 0, so no mean advection

(ii) wg = 0, so no vertical eddy flux to leading order

→influence of eddies described entirely by the northward flux v ′q ′ = ρ−1∇ ⋅ F

Know from the Eliassen-Palm theorem that if the waves are everywhere

(I) of small amplitude,

(II) conservative, and

(III) statistically steady

→ F is nondivergent and v ′q ′ = 0. Then ∂q̄/∂t is independent of the waves
(if we assume that X̄ is also independent).



Closely related to Kelvin’s circulation theorem:

Then ∂q̄/∂t is independent of the waves
(if we assume that X̄ is also independent). Now,

q̄ = f + Δ 2ψ̄

therefore can invert PV:

∂ψ̄
∂t

= Δ−2 ∂q̄

∂t
= Δ−2X̄

Δ 2 is an elliptic operator, so solution invokes boundary conditions on ∂ψ̄/∂t.

If we invoke the further condition that

(IV) the boundary conditions on ∂ψ̄/∂t are independent of the waves

then ∂ψ̄/∂t is everywhere independent of the waves.

ū = −∂ψ/∂y , θ̄ = f0H/κΠ∂ψ/∂z → same true of ∂ū/∂t, ∂θ̄/∂t.

→ nonacceleration theorem (Charney-Drazin, Andrews-McIntyre)
Closely related to Kelvin’s circulation theorem:



(v) Mean momentum and heat budgets



Mean momentum and heat budgets

Zonal mean QG eqs:

∂ū
∂t

− f0v̄a = Gx − ∂
∂y

u ′v′

∂θ
∂t

+ wa
∂θ̄
∂z

= ρΠJ − ∂
∂y

v′θ′

∂va

∂y
+ 1
ρ

∂
∂z

ρwa = 0

f0
∂ū
∂z

+ κΠ
f0H

∂θ̄
∂y

= 0

set of 4 equations in the 4 unknowns ∂u/∂t, ∂T/∂t, v̄a and w̄a

in terms of the two eddy driving terms u ′v′, v′θ′

Central role of the PV flux—obvious in mean PV budget—not obvious here



Transformed Eulerian-mean theory
(Andrews & McIntyre, J. Atmos. Sci., 1977; Andrews et al., 1981)

Define ageostrophic “residual” mean streamfunction

v̄∗, w̄∗ = v̄a − 1
ρ

∂ρχ∗
∂z

, w̄a +
∂χ∗

∂y

where

χ∗ = v′θ′

∂θ̄/∂z

(and remember θ̄ = θ̄z to leading order). Then

∂ū
∂t

− f0v̄∗ = Gx + 1
ρ ∇ ⋅ F

∂θ
∂t

+ w∗
∂θ̄
∂z

= ρΠ−1J̄

∂v̄∗
∂y

+ 1
ρ

∂ρw∗
∂z

= 0

f0
∂ū
∂z

+ κΠ
f0H

∂θ̄
∂y

= 0

where F is the EP flux, as before.
Now have set of equations for v̄∗, w̄∗,∂u/∂t and ∂T/∂t in terms of one

eddy forcing term ρ−1∇ ⋅ F = v′q ′, appearing as effective body force (per unit mass)
Nonacceleration theroem then follows directly.

∂ū
∂t

− f0v̄a = Gx − ∂
∂y

u ′v′

∂θ
∂t

+ wa
∂θ̄
∂z

= ρΠJ − ∂
∂y

v′θ′

∂va

∂y
+ 1
ρ

∂
∂z

ρwa = 0

f0
∂ū
∂z

+ κΠ
f0H

∂θ̄
∂y

= 0

∂ū
∂t

− f0 v̄∗ = Gx + 1
ρ ∇ ⋅ F

∂θ
∂t

+ w∗
∂θ̄
∂z

= ρΠ−1J̄

∂v̄∗
∂y

+ 1
ρ
∂ρw ∗

∂z
= 0

f0
∂ū
∂z

+ κΠ
f0H

∂θ̄
∂y

= 0



Therefore

ρv′q′ = ∇ ⋅ F

where

F = Fy , Fz 

= ρ ∂ψ′

∂x

∂ψ′

∂y
,
ρf0

2

N2

∂ψ′

∂x

∂ψ′

∂z

= −ρu′v′ , ρf0
v′θ ′

dΘ0/dz

F is known as the ELIASSEN-PALM flux.



F as a momentum flux:

Consider adiabatic flow; isentropic surface C (of constant θ) ,
disturbed by small-amplitude waves.
Zonally-averaged zonal stress on C is τ where

ρτ = −p sinγ ≃ −pγ ≃ −γ δp

(since γ̄ = 0 where δp is the pressure variation along C .
γ is small

→ tanγ ≈ γ ≈ ∂δzg/δx ≈ − ∂θ∂x
/ ∂θ∂z

so δzg ≈ −θ′/∂θ̄/∂z.
C is the surface of constant geometric height zg reference position for C.
p ′ the pressure variation along C, then, along C , δp = p ′ − gρδzg . So

γ δp =
∂δzg 
∂x

p ′ − gρ
∂δzg 
∂x

δzg =
∂δzg 
∂x

p ′

= −δzg
∂p ′

∂x
= f0ρ v′θ′

∂θ̄/∂z
,

→ τ = −f0
v′θ′

∂θ̄/∂z

→ so Fz represents vertical momentum transport by form drag on isentropic surfaces.
So (unlike e.g., chemical tracers) momentum can be radiated over large distances.



(vi) Rossby waves

• Barotropic

• Baroclinic

• Rossby wave breaking



Barotropic Rossby waves

Two-dimensional flow ∂/∂z = 0

PV is just absolute vorticity q = f0 + βy + ∇h
2ψ

(∇h
2 = ∂2/∂x2 + ∂2/∂y2)

Vorticity conservation for waves on a constant zonal flow ū,
→ ∂q̄/∂y = β

∂q ′

∂t
+ ū

∂q ′

∂x
+ βv′ = 0

→ ∂
∂t

+ ū ∂
∂x

∇h
2ψ ′ + β

∂ψ ′

∂x
= 0

wave solutions ψ ′ = ReΨ0 expikx + ly − kct where

c = ū −
β

k2 + l2

“elasticity” of PV gradient
→ westward propagation (relative to mean flow)
→ dispersive

Π
1

Π
2q1

q2



Stationary Rossby waves

Barotropic stationary waves:

c = ū −
β

k2 + l2
→ κs

2 = k2 + l2 =
β
ū

For β = 1. 6 × 10−11m−1s−1, ū = 30ms−1,

2π
κs

= 2π ū

β
≃ 8600 km

≃ zonal wave 3 at 45o latitude

Zonal group velocity of stationary waves:

cg,x =
∂ck
∂k

= ū +
βk2 − l2

k2 + l22

= 2k2 ū
2

β
> 0

Long-term January mean geopotential height

gfdsemi
ノート注釈
gfdsemi : Marked

gfdsemi
タイプライターテキスト
NCEP data




Rossby wave propagation on the 

sphere from a localized 

midlatitude source [Held 1983]

Realistic zonal 

winds (with tropical 

easterlies)



Stationary Rossby waves in the lab



Critical layers and Rossby wave breaking

ψ = − 1
2
Λy2 + Ψ0cos kx

u ≃ Λy

Mean westerlies: wavy 

streamlines

Closed eddies: 

overturning:

width = 4
Ψ0
Λ

∂q

∂y
> 0 → v ′q ′ < 0 → ∇ ⋅ F < 0

- absorption of wave activity

gfdsemi
タイプライターテキスト

gfdsemi
タイプライターテキスト
Haynes (1985)



Rossby wave propagation on the 

sphere from a localized 

midlatitude source [Held 1983]

Realistic zonal 

winds (with tropical 

easterlies)



Subtropical breaking of Rossby

waves from a localized midlatitude

source

(1-layer; 300 hPa mean wind)

[Esler et al., J Atmos Sci, 2000]

PV contours



Subtropical breaking of Rossby

waves from a localized midlatitude

source

(1-layer; 300 hPa mean wind)

[Esler et al., J Atmos Sci, 2000]

PV contours



Baroclinic Rossby waves: Vertical propagation

[Charney & Drazin, J. Geophys. Res., 66, p83, 1961]

Conservative, small amplitude waves on constant
background flow ūz, N2 also constant

Linearized QGPV equation:

∂
∂t

+ ū ∂
∂x

q ′ + v′
∂q̄

∂y
= 0

where now

q ′ = Δ 2ψ ′ ≡
∂ 2ψ ′

∂x 2
+

∂2ψ ′

∂y 2
+ 1
ρ

∂
∂z

ρf0
2

N2

∂ψ ′

∂z
,

∂q̄

∂y
= β

so

∂
∂t

+ ū ∂
∂x

Δ 2ψ ′ + β
∂ψ ′

∂x
= 0

Recall ρ = ρ0 exp−z/H. Solutions are of the form

ψ ′ = ReΨ0 exp z
2H

expikx + ly + mz − kct

where

m2 = N2

f0
2

β
ū − c

− k2 − l2 − 1
4H2

or

c − ū = −β k2 + l2 +
f0
2

N2
m2 +

f0
2

4N2H2

−1

→ dispersion relation for baroclinic Rossby waves



Vertical propagation of stationary waves

Vertical wavenumber m for c = 0

m2 = N2

f0
2

β
ū

− k2 − l2 − 1
4H2

real m requires

0 < ū < Uc

“Rossby critical velocity” Uc is

Uc = β k2 + l2 +
f0
2

4N2H2

−1

→ propagation “window” for the mean winds
→ no propagation through easterlies ū < 0, nor strong westerlies ū > Uc

Uc decreases with increasing k2 + l2, so the window becomes
narrow for small-scale waves

κ2 = k 2 + l2

synoptic scale wave, κ2 = 1. 96 10−11m−2, Uc ≃ 1ms−1

largest planetary scale wave k = π/14000km, l = π/6000km, Uc ≃ 35ms−1



Typical stratospheric analyses  (30hPa, 2006 Jan 10)

summer                                                     winter                    

almost no waves                                  planetary scales only

gfdsemi
タイプライターテキスト
NCEP data
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