

1

MSSG-Aのモデル開発

(独)海洋研究開発機構(JAMSTEC) 地球シミュレータセンター(ESC) マルチスケールモデリング研究グループ(MSSG) 馬場 雄也

モデルワークショップ-日本における気象・気候モデルの技術的現状と今後の展開-名古屋大学工学研究科、2012/12/12

1.MSSGの概要 2.力学コア・モデル要素概要 3.計算性能 4.モデル・モデル要素の構造 5.実装方法、コーディング上の工夫 6.ライブラリ開発と現行モデルの親和性 7.ライブラリ開発への提言

"Multi-Scale Simulator for the Geo-environment"

- ✓ Dynamical core: Baba et al. (2010) MWR
- ✓ Quick solver: Baba & Takahashi (2011) JMSJ
- ✓ Advection scheme for CRM: Baba &Takahashi (2012) QJRMS

Urban scale 1m~100m (homogeneous grid)

参考:NEC報告書(2003)~(2008)

MSSG

Typhoon ETAU in 2003

Okhotsk-sea (1/12deg.)

EXTRAWING

海洋研究開発機構 地球シミュレータセンター

AWING EXPLORING AND TRAVELING THE WORLD INSIDE GEOSCIENTIFIC DATA

JAMSTEC

к

The Earth Simulator Center / JAMSTEC

HE-VI (horizontal-explicit verticalimplicit) method

 $\frac{R^{*\tau+\Delta\tau}-R^{*\tau}}{\Delta\tau} + \nabla_{H} \cdot \mathbf{V}_{H}^{\tau+\Delta\tau} + \frac{\partial}{\partial z^{*}} \left(\mathbf{V}_{H}^{\tau+\Delta\tau} \cdot \mathbf{G}^{\mathbf{z}} + \frac{W^{*\tau+\Delta\tau}}{G^{1/2}} \right) = -\frac{\partial}{\partial z^{*}} \left(\frac{W^{t}}{G^{1/2}} \right)$

 $\frac{\mathbf{V}_{\mathbf{H}}^{*\tau+\Delta\tau} - \mathbf{V}_{\mathbf{H}}^{*\tau}}{\Delta\tau} + \nabla_{H}P^{*\tau} + \frac{\partial}{\partial z^{*}}(\mathbf{G}^{\mathbf{z}}P^{*\tau}) = -\nabla_{H}P^{t} - \frac{\partial}{\partial z^{*}}(\mathbf{G}^{\mathbf{z}}P^{t}) - \mathbf{A}_{\mathbf{H}}^{t} - \mathbf{C}_{\mathbf{H}}^{t} + \mathbf{F}_{\mathbf{V}_{\mathbf{H}}}^{t}$

Momentum conservation

$$\frac{W^{*\tau+\Delta\tau}-W^{*\tau}}{\Delta\tau} + \frac{\partial}{\partial z^*} \left(\frac{P^{*\tau+\Delta\tau}}{G^{1/2}}\right) + R^{*\tau+\Delta\tau}g = -\frac{\partial}{\partial z^*} \left(\frac{P^t}{G^{1/2}}\right) - R^t g - A_z^t - C_z^t + F_W^t$$

Energy conservation

$$\frac{P^{*\tau+\Delta\tau} - P^{*\tau}}{\Delta\tau} + (\gamma - 1) p^t \left[\nabla_H \cdot \mathbf{v}_H^{\tau+\Delta\tau} + \frac{\partial}{\partial z^*} \left(\mathbf{v}_H^{\tau+\Delta\tau} \cdot \mathbf{G}^z + \frac{w^{*\tau+\Delta\tau}}{G^{1/2}} \right) \right] \\
+ \nabla_H \cdot \left(p^t \mathbf{v}_H^{\tau+\Delta\tau} \right) + \frac{\partial}{\partial z^*} \left(p^t \mathbf{v}_H^{\tau+\Delta\tau} \cdot \mathbf{G}^z + \frac{p^t w^{*\tau+\Delta\tau}}{G^{1/2}} \right) \\
= - (\gamma - 1) p^t \frac{\partial}{\partial z^*} \left(\frac{w^t}{G^{1/2}} \right) - \frac{\partial}{\partial z^*} \left(\frac{p^t w^t}{G^{1/2}} \right) + (\gamma - 1) q^t_{heat}.$$

9

HE-VI (horizontal-explicit verticalimplicit) method

Mass conservation

$$\frac{R^{*\tau+\Delta\tau}-R^{*\tau}}{\Delta\tau} + \frac{\partial}{\partial z^*} \left(\frac{W^{*\tau+\Delta\tau}}{G^{1/2}}\right) = S_R,$$

Momentum conservation

$$\frac{W^{*\tau+\Delta\tau} - W^{*\tau}}{\Delta\tau} + \frac{\partial}{\partial z^*} \left(\frac{P^{*\tau+\Delta\tau}}{G^{1/2}}\right) + R^{*\tau+\Delta\tau}g = S_W,$$

Energy conservation

$$\frac{P^{*\tau+\Delta\tau} - P^{*\tau}}{\Delta\tau} + \gamma p^t \frac{\partial}{\partial z^*} \left(\frac{W^{*\tau+\Delta\tau}}{\rho^t G^{1/2}}\right) + \frac{W^{*\tau+\Delta\tau} \tilde{g}}{G^{1/2}} = S_P,$$

$$\begin{split} & \text{Helmholtz equation} \\ & \frac{\gamma}{G^{1/2}} \delta_{z^*} p^t \delta_{z^*} \frac{W^{*\tau + \Delta \tau}}{\rho^t} + \frac{1}{G^{1/2}} \delta_{z^*} \left(W^{*\tau + \Delta \tau} \tilde{g} \right) + \frac{g}{G^{1/2}} \delta_{z^*} W^{*\tau + \Delta \tau} - \frac{W^{*\tau + \Delta \tau}}{\Delta \tau^2} \\ & = -\frac{\left(W^{*\tau} + \Delta \tau S_W \right)}{\Delta \tau} + \frac{1}{\Delta \tau G^{1/2}} \delta_{z^*} \left(P^{*\tau} + \Delta \tau S_P \right) + \frac{g}{\Delta \tau} \left(R^{*\tau} + \Delta \tau S_R \right), \end{split}$$

Feature of this scheme

- 1. Horizontal acoustic wave is explicit but implicit in vertical.
- 2. Vertical equations are formulated as conservative.

メソスケールシミュレーション

境界層スケールシミュレーション

2003年台風10号のシミュレーション Z*系座標 (地形に沿ったterrain-coordinate)

皇居・丸の内地域の風況シミュレーション **Z系座標** (絶対座標系)

✓方程式はz*系とz系で同じもので、座標変換したものを使う。
 ✓Z系では3D Helmholz方程式を解くのでAMGソルバーを使用。

Regional climate run using 2M scheme

RECCA

✓ Target area : Tokyo plane (600km2)

AMSTEC

- ✓ Analyzed area: 34.5-37.5, 137.5-141
- ✓ Side boundary: MSM(every 6 hour)
- ✓ Resolution : 4km, 50 layers (20km)
- ✓ Time integration : yr:2006 ~ 2010 (5 year, from Jul. to Sep.)

- ✓ Microphysics : 1M vs F2M
- ✓ Radiation : MSTRNX
- ✓ PBL scheme : MYNN level-2.5
- ✓ Urban canopy scheme : Kusaka et al. (2001) (from WRF ver.3)

Comparison of precipitation (vs OBS)

AMST

Normalized by total precip. of each case.
 Reproducibility of strong precip. is not good,

- and this trend becomes clearer as precip. becomes stronger.
- ✓ 1M overestimates heavy rain, and 2M suppresses this overestimation.

Case: Kyobashi river

- Evaluate "wind street" when Kyobashi river is recovered.
 - ※ Kyobashi river is reclaimed, however, possibility of recovering the river is considered in recent realistic urban design.
- Wind street effects:
 - ✓ Bringing sea breeze to inland by advection
 - \checkmark Cooling by river and grassland
 - \checkmark Exchange hot air in vertical direction
- How does the river work ?
 - Is the sea breeze brought into urban ?
 - Really does temperature decreases ?
 - Does the air exchange occur ?
- How does the wind distribution change ?

oblique view

Case1(No River)

Case2(With River)

Streamline over river

- Volume rendering: temperature. Line: streamline.
- Streamlines are illustrated by different colors, from east: white, from west: black.
- In both cases, vertical vortex exists that enhance air exchange between upper and lower atmosphere.
- In case1, number of black streamline is small.
- → Streamline is blocked off between east and west.
- In case2, number of black streamline is large.
- → Air from mount of the river flows toward west side.
- Vertical vortex location moves northward.

Dynamical core	Fully compressible Euler equations (Baba et al. 2010)				
Solvers	HEVI (Baba et al. 2010), HEVE, fractional step (Moureau 2007, Baba and Takahashi 2011)				
Horizontal coordinate	Yin-Yang (global) and lat-long (regional) grid (C-grid)				
Vertical coordinate	Terrain-following (z*coordinate), z coordinate				
Advection scheme	3rd/5th-order Wicker Skamarock (Wicker and Skamarock 2002), 2nd- order WAF (Toro 1989), 3rd-order QUICK (Leonard 1979), 2nd/3rd-order ENO (Shu and Osher 1989), 3rd/5th-order WENO (Baba & Takahashi 2012), CIP-CSL2 (Yabe et al. 2001), PD and MO flux limiter (Skamarock 2006)				
Cloud physics	Reisner (Reisner et al. 1998), SBM, Grabowski (1998,1999), 1M/2M (Baba 2012), KF2 (Kain and Fritsch 1992), Emanuel (Emanuel 1991,1999), large-scale condensation (Treut and Li 1991)				
Boundary layer scheme & LES	MYNN level-2.5 (Nakanishi and Niino 2004, 2006, 2009), Deardorff (1980), Smagorinsky (1969)				
Urban canopy scheme	UCSS (Ashie et al. 2004), Single-layer canopy scheme (Kusaka et al. 2001)				
Surface flux & landsurface	Grell et al. (1992), Louis (1979), Fairall et al. (COARE3.0) (2003), bucket model, MATSIRO(under progress)				
Radiation	Simple radiation, Cloudrad (MM5), CAM3, MSTRNX (Sekiguchi and Nakajima 2008), 3D radiation scheme (s2srad) 17				

Computational performance on ES1

case	node	CPU	Mflops∕C PU	vector length	vector ratio	Tflops	peak performan ce ratio	accelerati on ratio	parallelizat ion ratio
couple	512	4096	4166.7	229	99.30%	17.07	52.10%	461	99.9973
	384	3072	4273.8	229	99.30%	13.13	53.40%	354.6	99.9968
	256	2048	4401.9	229	99.30%	9.02	55.00%	242.6	-
atmos	512	4096	4575.2	228	99.30%	18.74	57.20%	479.1	99.9983
	384	3072	4606.1	228	99.30%	14.15	57.60%	365.2	99.9969
	256	2048	4692.4	228	99.30%	9.61	58.70%	247.5	_
ocean	498	3984	3629.3	240	99.30%	14.46	45.40%	401.3	99.994
	398	3184	3568.5	240	99.30%	11.36	44.60%	333.7	99.989
	207	1656	4234.3	240	99.30%	7.01	52.90%	188.2	-

- Performance of MSSG(couple): 4.2GFLOPS/CPU
- peak performance ratio :52%
- Parallelization: 99.997%

H21年度ES利用者連絡会発表資料(MSSG最適化,NEC)

Earth simulator 2

Earth simulator 1 (since 2002-2009) ✓ 8CPU (8Gflops) & 16GB memory per node

- ✓ Total 640 nodes, 5120 CPUs
- ✓ Theoretical peak performance: 40TFlops

Earth simulator 2 (since 2009) ✓8CPU(102.4Gflops) & 128GB memory per node

- ✓ Total 160 nodes, 1280 CPUs
- ✓ Theoretical peak performance: 131TFlops

Computational performance on ES2

EXCLUSIVE	04		V.OP	AVER.	I-CACHE	O-CACHE	BANK CONFLICT			
TIME[sec]	/U		RATIO	V.LEN	MISS	MISS	CPU PORT	NETWORK		
19777.543	99.7	18592.9	99.54	236.1	256.595	772.348	262.653	6554.572	(A1)	main loop
4479.512	22.6	22277.2	99.51	239.2	90.681	198.871	74.955	1697.248	(A2)	N-S HEVI
2632.633	13.3	24765.7	99.50	238.7	26.207	71.759	52.430	821.099	(A2)	N−S eq.(large)
4649.974	23.4	34140.6	99.80	238.7	16.851	60.720	20.966	566.511	(A2)	tracer eq.
3996.377	20.1	7798.0	99.20	213.7	87.334	272.048	57.238	1878.027	(A2)	physics
285.278	1.4	1471.8	99.36	230.4	8.858	15.927	10.138	198.995	(A2)	boundary
596.373	3.0	584.6	99.40	224.2	5.130	8.725	13.396	445.971	(A2)	boundary (side)
235.785	1.2	6361.6	99.11	239.6	0.385	1.991	5.099	93.416	(A2)	z2ps
1073.107	5.4	305.1	81.38	172.9	1.550	3.569	1.977	218.644	(A2)	output
130.365	0.7	23363.6	99.42	238.4	0.399	1.103	22.172	65.026	(A2)	RKG
504.566	2.5	646.3	98.62	239.8	0.295	0.326	0.012	352.960	(A2)	diagno
448.958	2.3	13480.8	99.24	227.6	16.439	33.263	4.128	192.399	(A2)	subfield
734.071	3.7	1083.8	79.70	236.7	0.406	99.532	0.134	23.240	(A2)	recalc dt
0.317	0.0	2.1	90.13	236.1	0.037	0.091	0.001	0.013	(A2)	restart

- Overall (main loop) performance: 18GFLOPS/CPU (18%)
- Dynamical core (N-S HEVI, N-S eq., tracer eq.): 60%
- Physical process (physics): 20%
- Communication (boundary, boundary(side)): 5%
- Others: 15%

✓研究員3名(大気3名、海洋1名)、ポスドク2名(海洋)、テクニカル・サポート2名(大気・海洋両方)。 ✓モデルコンポーネントの導入、デバッグは主に研究員、 外注ではテクニカル・サポートメンバーが行なっている。 ✓マンパワーは常に不足している。

開発上のエ夫

✓各種テストケース(理想実験)を検証のため用意。
 ✓ソースコード管理にはsubversionを使用。
 ✓リースブラウザにはredmineとwebsvnを併用。
 ✓バグ報告は主にSVN/redmine上で行なっている。
 ✓モデル説明書2種類をlatexで作成。
 ✓報告書、実験データ管理にsambaサーバを利用。
 ✓モデル説明の補助としてwiki(pukiwiki)ページを用意。

0 1000 2000 3000 4000 5000 6000 7000

23

subroutine equation_core_wrapper(prcpx,dQ_rei,dflp,dfpp,dfrp,optc,opti) real(DP), dimension(gDimin:gDimax,gDjmin:gDjmax,gM_ntrc), intent(inout) :: prcpx 3次元配列を2次元配 real(DP), dimension(gDimin:gDimax,gDjmin:gDjmax,gDkmin:gDkmax), intent(inout) :: dQ_rei real(DP), dimension(gDimin:gDimax,gDjmin:gDjmax,gDkmin:gDkmax), intent(inout) :: dflp,dfpp,dfrp 列として処理し、緯度 real(DP), dimension(gDimin:gDimax,gDjmin:gDjmax),intent(inout) :: optc,opti integer :: i 方向はマイクロタスク tifdef use_mssglin_ に割り付ける。最内 !cdir pardo by = 1, nobarr = (entry,exit) cdir nodep ループは経度方向で、 do j = 1, sM_np call equation_core(0, gM_nl+1, 0, gM_np+1, gDimin, gDimax, gDjmin, gDjmax, ベクトル化する。鉛直 gAimin, gAimax, gAjmin, gAjmax, gM_nr, gM_ntrc, j, 1, gM_nl, 計算が入る積雲ス gN%roa, gN%psa, gN%fl, gN%fp, gN%fr, gN%rq, 🤱 gN%drop, gN%dpsp, dflp, dfpp, dfrp, gN%drqp, prcpx, 🤱 キーム、雲微物理(落 gMe%sqrtgb1, 1.0_DP, 🖁 dQ_rei,md%ze,optc,opti) end do 下)、放射スキームに tendif Type A: mssglin.f90 有効。 end subroutine equation_core_wrapper

<pre>!kg!cdir pardo for !kg microtask : do n = 1, ntask !kg ijs = ij_sta(n) !kg ije = ij_end(n) !cdir pardo by=1 microtask : do j = 1, gM_np call psurfc (</pre>	S ! OUT
TFLX_SURF , QFLX_SURF ,	& INOUT
invI , d_sens , d_evap	, <mark>&</mark> IN
rtixsu_surf, rfixsd_surf, rfixid_	surt, & IN
GPH ,	& ! IN
GCPRC , GLPRC , GCSNW	, GLSNW , <mark>&</mark> ! IN
md%idsrf_convert, md%jdsrf_convert, gN%dt	, gN%dt , <mark>&</mark> ! IN
ijs, ije , md%beta_pre) ! IN N I TN
∣, gm_n∣ ,j , ma∧beta_pre	
enddo microt <mark>ask</mark>	Type B: land.f90
end subroutine bucke tmain_microtask	

H21年度ES利用者連絡会発表資料(MSSG最適化,NEC)

変更後のイメージ do k = 2, nr-1do j = 1, np+1 !cdir unroll=2 do i = 1, nl+1 roa_ij = roapd(i, roa_ip1 = roapd(i+1, j, k) roa_ip2 = roapd(i+2, j, k) roa_im1 = roapd(i-1, j, k) roa_im2 = roapd(i-2, j, k)
roa_im3 = roapd(i-3, j, k) $rov | u(i, j, k) = \dots$ end do end do !cdir outerunroll=8 do j = 1, np+1 do i = 1. nl+1 = roapd(i, roa ij roa_jp1 = roapd(i, j+1, roa_jp2 = roapd(i, j+2, $roa_{jm1} = roapd(i, j-1)$ roa_jm2 = roapd(i, j-2, k) roa_jm3 = roapd(i, j-3, k) rovp_v(i, j, k) = ... end do end do end do

力学過程の最適化に有効。

- ループを分割
 - iの差分ループは、unroll=2 を
 iのループに対し適用
 - →ベクトルロードを削減 (バンクアクセス単位の16Byte化に より、2段アンロールまでは、メモリ のスループットが落ちない)
- jの差分ループは、outerunroll=8 を jのループに対し適用
 - → ベクトルロードを削減

H21年度ES利用者連絡会発表資料(MSSG最適化,NEC)

変更前のコード

0694	do k = 2, $nr-1$	物理過程の最適化に有効。
0701 0709 0710 0711 0712 0713 0716 0717 0718 0719 0720	<pre>lambdab_r (i, k) = (rqr (i, k)*L_PIB*Norrorb lambdap2b_r (i, k) = lambdab_r (i, k)*lamb lambdap3b_r (i, k) = lambdap2b_r (i, k)*la lambdap4b_r (i, k) = lambdap3b_r (i, k)*la lambdap5b_r (i, k) = lambdap4b_r (i, k)*la lambdap6b_r (i, k) = lambdap5b_r (i, k) *(-c0267gm3 *lambdap3b_r (i, k) -c1022500gm5 *lambdap5b_r (i, k) +c75500000gm6*lambdap6b_r (i, k)</pre>	o(i, k))**0.25_DP odab_r(i, k) ambdab_r(i,
0766 0767	enddo enddo	le ve le de le
0771 0772	do k = 2, nr-1 do i = ijs, ije	lambdab_r,
0861 ! 0865 0866 0867 0868	Reisner(1998) (A. 47) Psacr(i, k)=PIp2ErsrowNor(i, k) *aUrmUsc * (5. 0_DP * lambdap6b_r(i, k)*lamb +2. 0_DP * lambdap5b_r(i, k)*lamb +0. 5_DP * lambdap4b_r(i, k)*lamb	lambda2b_r, cUrUsp05Nossod & lambda3b_r等を odab_s(i, k) & メモリからロード odap3b_s(i, k)
0869 ! 0870 0871 0872 0873	Refsher(1998) (A. 48) Pracs(i,k)=PIp2ErsrosNor(i,k) *aUrmUsc * (5.0_DP * lambdap6b_s(i,k)*lambdab +2.0_DP * (lambdap3b_s(i,k)*lambdap +0.5_DP * (lambdap3b_s(i,k)*lambdab	cUrUsp05Nossod & _r(i,k) & & o2b_s(i,k))*lambdap2b_r(i,k) & o_s(i,k))*lambdap3b_r(i,k))
0884 0885	enddo enddo	H21年度FS利用者連絡会発表資料(MSSG最適化 NFC

H21年度ES利用者連絡会発表資料(MSSG最適化,NEC)

カ学コアから分離することが難しい。
 カ学コアから分離できるが鉛直座標の制限を受ける。
 カ学コアから分離できて鉛直座標の制限が無い。

✓物理過程は別グループでも計算順序の依存性がある。

- ✓<u>知見の分散:</u>モデルに関する情報の共有と知見の蓄積が 不十分。→redmine, pukiwikiである程度解決できる。しかし、 まとめるツールの便利さは人によって違うので、フォーマッ トが異なる文書が分散しがち。
- ✓ <u>モデル確立までのタイムラグ</u>:先進的なモデル要素を実装しても、論文にするレベルにまでに精緻化するには膨大な検証実験が必要。実装から論文にするまでのタイムラグが大きい。
- ✓<u>コーディングの違い</u>:研究とチューニングのコーディングが 異なる。研究では可読性と、式に忠実であることを重視。 チューニングでは高速化と演算量の低下を重視。

<u>共通ライブラリが便利なのは明らか。それなのに実現</u> <u>されていないのには理由がある。</u>

- ✓ <u>モデル構造の問題</u>: モデル要素には力学コアと密接に関係しているものもあり、容易に分離することができない。例:トレーサスキーム、乱流スキームなど。
- ✓ 計算順序の問題:計算順序に依存するパラメタリゼーション が多数存在するため個別に分離できない。例:積雲スキー ムと大規模凝結スキーム。
- ✓ 計算機の問題: すべてのアーキテクチャで高速に動作する 物理過程モジュールを作ることは不可能。例: ベクトルとスカ ラーで高速に動作するモジュールの構造は大きく異なる。
- ✓ <u>モチベーションの問題</u>:成果を出すために使える計算機と、 ライブラリ開発のための計算機が異なるとモチベーションが 低下する(もともとモデル開発は成果を目指して行なってい るため)。→評価体制とも関係する。

✓<u>ライブラリ化が可能なものを限定して共通化する</u>:物 理過程で、グループ3はライブラリ化には適切な構 造をしており、ライブラリ化はまずこれらに限定する。 →モデル構造と計算順序の問題を解決。

✓<u>スカラー、ベクトルの区別をしないコーディングを徹</u> <u>底する</u>: ライブラリがスカラーのみのコーディングで はベクトル機がメインの研究者にはメリットが少ない。 例えば鉛直方向を最内ループに持ってくるコーディ ングは禁止したキャッシュ利用方法を考える。 →計算機の問題とモチベーションの問題を解決。