系外惑星大気WS2014/惑星大気研究会(14/01/07)

地球型水惑星における 太陽放射増大に対する応答の GCMによる検討

新田 光¹ 阿部 豊¹ 高尾 雄也² (^{1東大·理·地惑、²東エ大)}

Credit to NASA

http://www.nasa.gov/mission_pages/kepler/multimedia/images/kepler-morningstar.html

地球型水惑星の分類

✓水の分布によって3つのタイプに分類 ✓気候状態がそれぞれ異なる

Abe+2013, Hawaii, Kona

地球型水惑星の分類

分類	水量	地形	特徴
陸惑星	∼ 0.1Mo	水を局所化	大気中の水蒸気が地表水分布を支配
部分海惑星	~ 1Mo	大陸が存在	ᄴᆂᅶᅘᆇᅸᇵᅶᅕᆕᇇᆇᆂᆂᄢ
海惑星	~ 10Mo	大陸無し	地衣小制达が小茶丸力和を又能

Abe+2013, Hawaii, Kona

地球型水惑星の分類

水の量、地形によって水分布が大きく変化

Planets Planets Planets

分類	水量	地形	特徴
陸惑星	~ 0.1MO	水を局所化	大気中の水蒸気が地表水分布を支配
部分海惑星	~1MO	大陸が存在	地表水輸送が水蒸気分布を支配
海惑星	~10MO	大陸無し	

Abe+2013, Hawaii, Kona

✓ 中心星から受け取るエネルギーが放出でき なくなり暴走的に水が蒸発、温度上昇

水分布と暴走限界(完全蒸発限界)

陸惑星降水分布

海惑星降水分布

✓ 水が極域に集中✓ 中低緯度は乾燥

✓ 全球的に降水
 ✓ 全球的に湿っている

Abe et al., 2011
3次元モデルによって陸惑星状態を再現
暴走限界を導出(相対太陽放射170%)⇔海惑星:130%程度
→暴走限界の水量、地形による水分布依存性はよく分かっていない

本研究の目的

水の量、地形による水分布と暴走限界 (完全蒸発限界)との関係を3次元モデル を用いて考察する 大気循環の寄与で暴走限界が変化

<u> Takao(2013),Leconte et al.(2013)</u>

様々な水分布に対して太陽放射を増大させ暴走限界を計算 1. 緯度方向のみの水分布の変化、限界 : 水の量 vs. 暴走限界 2. 2次元的な水分布の変化、限界 : 地形 vs. 暴走限界

3次元気候モデル

✓ 地球大気大循環モデルCCSR/NIES AGCM5.4g

✓ 格子点間隔 ● 水平方向:5.6°間隔、格子点数32×64個 ● 鉛直方向:20層

✓ 力学過程:全球プリミティブ方程式系
 ✓ 物理過程:放射過程、雲生成/消滅過程、地表過程

✓ 円軌道、自転軸傾斜なし、地表アルベド=0.3

水の量と初期水陸境界

- 初期水陸境界:(水蒸気輸送)=(地表面水輸送)となる緯度
- 水量が多ければ多いほど赤道域まで水がはられていく
- 初期水陸境界が水の量に対応

暴走限界と水輸送

水量に対応する各初期境界のときの安定した水分布を計算 相対太陽放射を上昇させ限界を導出

暴走限界と水輸送

水量に対応する各初期境界のときの安定した水分布を計算
相対太陽放射を上昇させ限界を導出

暴走限界と水輸送

水量に対応する各初期境界のときの安定した水分布を計算
相対太陽放射を上昇させ限界を導出

初期水陸境界vs暴走限界

中高緯度初期境界と大気循環

低緯度初期境界と大気循環

経度分布依存性(地形効果の見積もり)

同水量で地形により経度方向の水分布が異なる場合

経度分布依存性(地形効果の見積もり)

同水量で地形により経度方向の水分布が異なる場合

4.Conclusion

まとめ

地表水緯度分布と暴走限界

- ✓ 初期境界(水の量)と暴走限界の関係は初期境界緯度で2つに分類
 - 初期境界:高緯度→乾燥領域が広いほど太陽放射が強くても地表水を 維持
 - 初期境界:低緯度→ハドレー循環の影響大

地表水経度分布と暴走限界

- ✓ 初期経度分布に依存して大気中の水蒸気分布が変化
 - 暴走限界も変化
 - 海惑星と部分海惑星とで暴走限界が異なる
 - 同じ部分海惑星でも大陸配置(地形)により暴走限界は変化
 - 暴走状態に入るときの気候状態
 - 地形による水分布の系統的理解

各水分布における限界時の惑星放射

各水分布における限界時の惑星放射

20

各水分布における限界時の惑星放射

各水分布における限界時の惑星放射

✓ 水陸境界で射出限界?(高尾, 2013)
 ✓ 射出限界は282Wm⁻²程度(Goldblatt+2013)

Abe et al, 2011

水分布と放射収支(Abe+2011)

Takao, 2013

暴走限界では 水陸境界が射出限界 ✓ 低緯度側は限界がないため

Nakajima et al, 1992

FIG. 3. The relationship between T_s and $F_{\rm IRtop}^{\dagger}$ for the case when $P_{n0} = 10^5$ Pa. $F_{\rm IRtop}^{\dagger}$ for the case of the saturation water vapor atmosphere, the blackbody radiation σT_s^4 , and the Komabayashi-Ingersoll limit are also indicated.

GCMによる雲分布(初期境界:高緯度)

GCMによる雲分布(初期境界:低緯度)

GCMによる雲分布(海惑星、初期境界0度)

Leconte et al., 2013

正味中心星放射110%程度で限界(375W/m^2)

- 雲による正のフィードバック
- ・大気循環による暴走の抑制(大気の乾燥化)

全球プリミティブ方程式系

1. 連続の式 $\frac{\partial \rho}{\partial t} + div(\rho v) = 0$

- 2. 静水圧の式 $\frac{\partial P}{\partial z} = -\rho q$
- 3. 運動方程式 $\frac{Dv}{Dt} = -2\Omega \times v \frac{1}{\rho}gradP + g + Fr$
- 4. 熱力学の式 *dU* = *Q PdV*
- 5. 水蒸気の式

$$\frac{Dq}{Dt} = S_q$$