金星および火星の熱圏・電離圏 スーパーローテーション

寺田直樹、寺田香織(東北大学) CPSセミナー 2012年11月12日

Outline

- 1. イントロ
 - 金星電離圏のスーパーローテーション(>400 m/s)
 - Pioneer Venus Orbiter (PVO) 観測
 - 金星電離圏、火星電離圏の近年の観測
 - Venus Express (VEX), Mars Express (MEX) 観測
 - 金星中間圏-熱圏結合シミュレーション
- 2. 「遷移領域(高度150~250 km)」を含むモンテ カルロ直接(DSMC)シミュレーション
 - 中層(下層)大気起源の非対称トルク
 - 太陽風起源の非対称トルク
- 3. 電磁圏-大気圏結合シミュレーションの今後の課題

[Miller and Whitten, 1991]

- 高度250 kmで、400 m/s以上の西向き高速風 (cf. 金星雲頂では100 m/s)
- 同高度の中性大気(熱圏大気)も同様の速さ
 でスーパーローテーションしていると考えられる³

- 昼夜間対流 + 西向きの高速風
- 系統的な測定誤差が含まれている可能性もある(近金点での衛星のラム方向は常に南西向き)

V (DAWN) - V (DUSK) (km/s)

- 電離圏の高高度、ターミネーター付近では、東向きの高 速風が卓越?
- 観測された密度、温度 + 熱圏で400 m/sのスーパーロ ーテーションを仮定して、運動方程式を計算すると一致

金星電離圏のスーパーローテーション

Cyclostrophic balance in ionosphere?

$$\frac{u^{2} \tan \phi}{a} = -\frac{1}{\rho} \frac{\partial P}{\partial y}$$
$$u = \left(-\frac{a}{\rho \tan \phi} \frac{\partial P}{\partial y}\right)^{1/2} \sim \left(\frac{kT}{m_{i}}\right)^{1/2} \sim 1 km / s$$

[Elphic et al., 1984]

- 旋衡風バランスで説明可能
- しかし、「何が駆動しているか」は不明

金星電離圏のスーパーローテーション (VEX/ASPERA-4観測)

1000 x 1000 km²ビン VEXの近金点高度は~300 km Jul. 2006-Dec. 2009

[Lundin et al., 2011]

VEX観測でも電離圏のスーパーローテーションらしきものが見えている?

金星電離圏のスーパーローテーション (VEX/ASPERA-4観測)

VEX観測でも電離圏のスーパーローテーションらしきものが見えている?

火星電離圏のスーパーローテーション (MEX/ASPERA-3観測)

< 200 eVのO⁺イオン速度分布 @火星 [Perez-de-Tejada and Lundin, 2009]

- MEX観測でも電離圏のスーパーローテーションらしきものが見えている???
- MAVEN観測(2014-)で明らかになることを期待⁹

金星中間圏-下部熱圏のスーパーロ ーテーション

[Hoshino, 2012]

- 中間圏-下部熱圏での西向き高速風観測
- ローカルタイム依存性(昼夜間対流+西向き高速)

- 金星中間圏-熱圏結合シミュレーション
- 下端: 重力波の平均位相速度40 m/s → 高速東西風の駆動

11

高度150 km以上では、分子粘性により波が減衰

流体から希薄気体への遷移

熱圏-外圏DSMC (Direct simulation Monte-Carlo) モデルを用いて、粒子的に、流体から希薄気体へと遷移する領域を含めて解く(高度130 km以上を解く)

遷移領域における スーパーローテーションの駆動源

- 中層(下層)大気起源の非対称トル ク(下から)
 - 1. 重力波
 - 2. (プラネタリースケール波(熱潮 汐波、ロスビー波、ケルビン波))
- 太陽風起源の非対称トルク(上から)

3. パーカースパイラルの効果

- 4. Aberration効果(惑星公転の 効果)
- 自発的な効果
 - 5. 外圏成分の角速度-エネルギー 空間での拡散

熱圏・電離圏のスーパーローテーション がわかると何がうれしいのか

- 熱圏・電離圏の基本構造の理解
- 大気の宇宙空間の流出・大気進化にも関係しうる

領域名称と用いるコードの関係

中性大気DSMCコード

- 熱圏-外圏DSMC (Direct simulation Monte-Carlo) コード
 - 確率を用いて分子・原子の移動と 衝突を決定
 - Lennard-Jones(6-12)型ポテンシャル
 - 電離
 - Solar EUV model (EUVAC model)
 - 加熱·冷却
 - O₂⁺の解離再結合
 - non-LTE 15 µm CO₂ cooling
 - 電離圏モデル
 - 光化学平衡を仮定

$$\phi(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Molecule	σ [Å]	ε/k [K]
CO ₂	3.769	245.3
Н	2.708	37.0
N ₂	3.681	91.42
0	2.80	117.0

• 密度、温度の高度分布は過去のモデルと一致

速度(DSMC) 290 altitude [km] 250 210 ×10 170 130 -6000 -4000 -2000 2000 4000 6000 0 horizontal velocity [m/s] 290 Ο altitude [km] 250 210 ×10 170 130 -2000 -1000 1000 2000 0 horizontal velocity [m/s]

 1次元モデル(空間1次元、速度空間3次元)にも関わ 5ず、水平方向に数十m/sの速度が出ている

• 粒子数が不足している訳では無さそう

計算結果:速度

速度(DSMC)

- 重力や加熱・冷却が無い場合は、200~300秒で速度
 シアーは拡散
- 速度シアーを駆動・維持する力が必要

- 50秒(高度150 km)~250秒(高度>200 km)周期の密度変動
- 加熱・冷却のインバランスが駆動?

 高度200~250 kmの速度はどのよ うにして決定?

太陽風起源の非対称トルク1:

パーカースパイラル

© Tomoko Nakagawa

磁気張力によって惑星周りの プラズマ流が非対称になりうる

Our Venus MHD simulation

 B_{IMF} =12 nT Cone angle=20 deg (M_A=6.3)

 B_{IMF} =48 nT Cone angle=20 deg (M_A=1.6)

Trans-terminator O⁺ flux

B_{IMF}=12 nT (M_A=6.3)

B_{IMF}=48 nT (M_A=1.6)

太陽風起源の非対称トルク1:

Effect of low M_A shock at Earth's bow shock [Chapman et al., 2004]

金星軌道における太陽風マッハ数の ヒストグラム [Luhmann, 1986]

金星や火星で本非対称
 が顕著になる可能性は低い

太陽風起源の非対称トルク2: Aberration効果(惑星公転の効果)

この効果は常に起こっている

太陽風起源の非対称トルク2: Aberration効果(惑星公転の効果)

太陽風起源粒子の降り込みによる水平風の加速の評価

- 太陽風起源粒子の降り込みによる非対称な加速。熱圏0.5自転に つき、最大で~5 m/sの速度増加
- ・ 電離圏流によって駆動される非対称な加速も考慮すれば、もう少 し増加する可能性がある
 ³⁰
 ³⁰

40

角速度-エネルギー空間での拡散

スーパーローテーションの駆動

[Bespalov and Savina, 2003]

による金星・火星・地球の外圏での

 外圏底高度(~250 km)ではsatellite粒子の数が少ないので効果は小さいが、さらに高高度ではスーパーロ ーテーションを生じる可能性がある

• 共有可能な高精度スキームと計算格子の開発が課題

32

• 例:HELIOSARES(仏)

高精度中心スキームの開発

・惑星電磁圏-大気圏シミュレーション
 – 多成分、non-MHD項の組み込みが課題

• TVDなどの高精度風上スキームは適用が困難

- 風上スキームは高精度だが、リーマン問題を解く必要がある(システム方程式の固有値と固有ベクトルを求める必要がある)
- 目標:数値散逸が小さく、風上化不要な(ユニバーサルな)高精度中心スキームを用いた惑星電磁圏-大気圏流体コードを開発。粒子コードとも親和性が高いものをつくる

高精度スキームの開発

 不連続と小振幅波の両者を正確に解くことは 通常困難

例えば、 HDシステム方程式 MHDシステム方程式

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ U \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \mathbf{v} \\ \mathbf{v} \rho \mathbf{v} + P \mathbf{I} \\ \mathbf{v} (U + P) \end{bmatrix} = source \qquad \frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ \mathbf{B} \\ U \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \mathbf{v} \\ \mathbf{v} \rho \mathbf{v} - \mathbf{B} \mathbf{B} + (P + \frac{B^2}{2}) \mathbf{I} \\ \mathbf{v} \mathbf{B} - \mathbf{B} \mathbf{v} \\ \mathbf{v} (U + P + \frac{B^2}{2}) - \mathbf{B} \mathbf{B} \cdot \mathbf{v} \end{bmatrix} = source$$

や、non-MHDシステム方程式などの 保存形のシステム方程式を解く

$$\frac{\partial}{\partial t}\mathbf{u} + \nabla \bullet \mathbf{F} = source$$

KT系 高精度中心スキームの概要

• Semidiscrete central scheme [Kurganov and Tadmor, 2000]

 伝搬速度(リーマンファンのスペクトル半径)の評価方法を変更することで 容易に精度向上

- 3次精度CWENO (central weighted ENO) [Levy et al., 2000]との組み合わせなど 36

Example: Shock tube test

Rusanov scheme (TVD Lax-Friedrichs) 2nd order semidiscrete scheme (minmod limiter) Our new scheme: 4th order semidiscrete scheme (UNO limiter)

Michigan U. multi-fluid model [Benna et al., 2004] can be applied to

300

400

500

200

- HD model

100

- MHD model
- Multi-fluid model
- Hybrid mode87

- ...

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Example: Sinusoidal wave propagation

・線形スカラー波の伝搬テスト

	1st <u>semidiscrete Rusanov</u>		2nd <u>semidiscrete</u> minmod		3rd <u>semidiscrete</u> CWENO	
Cells	L1	Order	L1	Order	L1	Order
250 500 1000 2000	4. 83325E-02 2. 46431E-02 1. 24432E-02 6. 25228E-03	- 0. 97181 0. 98583 0. 99290	1. 63945E-03 4. 42086E-04 1. 16929E-04 3. 05034E-05	- 1. 89081 1. 91869 1. 93859	3.85717E-04 2.66221E-05 1.47139E-06 8.43951E-08	- 3. 85685 4. 17737 4. 12388
20 40 80 160 320 640	3. 99376E-01 2. 48004E-01 1. 39207E-01 7. 38891E-02 3. 80833E-02 1. 93353E-02	- 0. 68738 0. 83313 0. 91380 0. 95620 0. 97792	1. 03053E-01 4. 60404E-02 1. 33480E-02 3. 80682E-03 1. 02616E-03 2. 75924E-04	- 1. 16241 1. 78628 1. 80997 1. 89133 1. 89491	9. 31360E-02 3. 63891E-02 8. 89501E-03 1. 60762E-03 1. 56522E-04 9. 41271E-06	- 1. 35583 2. 03244 2. 46807 3. 36049 4. 05561
	2nd semidiscrete UNO		4th <u>semidiscr</u>	ete UNO		
Cells	L1	Order	L1	Order	L1	Order
20 40 80 160	3. 37455E-02 8. 25809E-03 2. 05666E-03 5. 13916E-04	- 2. 03082 2. 00550 2. 00070	3. 26428E-03 2. 19966E-04 1. 47912E-05 1. 01675E-06	- 3. 89141 3. 89447 3. 86270		

9.57824E-08

1.07240E-08

3. 40806

3.15892

CFL = 0.4

320

640

時間更新には全て3次のTVD Runge-Kuttaを使用

1.99991

1.99987

1. 28487E-04

3. 21247E-05

Backup charts

Mean free path

計算結果:温度

温度(DSMC) 1000秒平均值

KT系 高精度中心スキームの概要

• Semidiscrete central scheme [Kurganov and Tadmor, 2000]

- セルの幅を仮想的に変えて、
 Δt→0の極限でsemidiscrete形式に
- Δt→0でエラーが大きくならない O(Δx^{2r-1})

$d\overline{u}_{j} - H_{j+\frac{1}{2}}(t) - H_{j-\frac{1}{2}}(t)$
$\frac{dt}{dt} = \frac{\Delta x}{\Delta x}$
及び数値流束
$H_{j+\frac{1}{2}}(t) = \frac{f(u_{j+\frac{1}{2}}^{+}(t)) + f(u_{j+\frac{1}{2}}^{-}(t))}{2}$
$-\frac{a_{j+\frac{1}{2}}(t)}{2}\left(u_{j+\frac{1}{2}}^{+}(t)-u_{j+\frac{1}{2}}^{-}(t)\right)$
ここで、a _{j+1/2} は最大スペクトル半径(波 の最大伝搬速度:磁気音波速度など)
$a_{j+\frac{1}{2}}(t) = \max\left\{\rho\left(\frac{\partial f}{\partial u}u_{j+\frac{1}{2}}^{-}(t)\right), \rho\left(\frac{\partial f}{\partial u}u_{j+\frac{1}{2}}^{+}(t)\right)\right\}$
$u_{j+\frac{1}{2}}^{+} = P_{j+1}(x_{j+\frac{1}{2}},t^{n}), u_{j+\frac{1}{2}}^{-} = P_{j}(x_{j+\frac{1}{2}},t^{n})$