The NetCDF C Interface Guide

NetCDF Version 4.1.2-betal
Last Updated 12 July 2010

Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, and Ed Hartne
Unidata Program Center

Copyright (©) 2005-2009 University Corporation for Atmospheric Research

Permission is granted to make and distribute verbatim copies of this manual provided that
the copyright notice and these paragraphs are preserved on all copies. The software and any
accompanying written materials are provided “as is” without warranty of any kind. UCAR
expressly disclaims all warranties of any kind, either expressed or implied, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.

The Unidata Program Center is managed by the University Corporation for Atmospheric
Research and sponsored by the National Science Foundation. Any opinions, findings, con-
clusions, or recommendations expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

Mention of any commercial company or product in this document does not constitute an
endorsement by the Unidata Program Center. Unidata does not authorize any use of
information from this publication for advertising or publicity purposes.

Table of Contents

1 Use of the NetCDF Library.................... 3
1.1 Creating a NetCDF Dataset...............oiiiiiiiiian. 3
1.2 Reading a NetCDF Dataset with Known Names................ 4
1.3 Reading a netCDF Dataset with Unknown Names..............)
1.4 Adding New Dimensions, Variables, Attributes.................. 6
1.5 Error Handling....... ... 7
1.6 Compiling and Linking with the NetCDF Library............... 7

2 Datasets............ 11
2.1 NetCDF Library Interface Descriptions........................ 11
2.2 Parallel Access for NetCDF Files................ooiiiiii... 12
2.3 Get error message corresponding to error status: nc_strerror... 14
2.4 Get netCDF library version: nc_ing_libvers.................... 14
2.5 Create a NetCDF Dataset: nc_create.......................... 15
2.6 Create a NetCDF Dataset With Performance Options: nc__create

... 17
2.7 Create a NetCDF Dataset With Performance Options:
NC_CreALE_PAT .« oottt e 20
2.8 Open a NetCDF Dataset for Access: nc_open.................. 21
2.9 Open a NetCDF Dataset for Access with Performance Tuning:
TIC__OPEIL « t vttt ettt et e et e e e e e e e e 23
2.10 Open a NetCDF Dataset for Parallel Access.................. 24
2.11 Put Open NetCDF Dataset into Define Mode: nc_redef....... 25
2.12 Leave Define Mode: nc_enddef 26
2.13 Leave Define Mode with Performance Tuning: nc__enddef 27
2.14 Close an Open NetCDF Dataset: nc_close.................... 29
2.15 Inquire about an Open NetCDF Dataset: nc_inq Family...... 30
2.16 Synchronize an Open NetCDF Dataset to Disk: nc_sync...... 31
2.17 Back Out of Recent Definitions: nc_abort 33
2.18 Set Fill Mode for Writes: nc_set _fill 34
2.19 Set Default Creation Format: nc_set_default_format.......... 36
2.20 Set HDF5 Chunk Cache for Future File Opens/Creates:
nc_set_chunk_cache............. 37
2.21 Get the HDF5 Chunk Cache Settings for Future File
Opens/Creates: nc_get_chunk_cache 38

3 Groups...........iii 41
3.1 Find a Group ID: nc_ing.ncid ... 41
3.2 Get a List of Groups in a Group: nc_inq_grps 42
3.3 Find all the Variables in a Group: nc_inq_varids............... 43
3.4 Find all Dimensions Visible in a Group: nc_inq_dimids 44

3.5 Find a Group’s Name: nc_inq_grpname. 45

ii

NetCDF C Interface Guide

3.6 Find a Group’s Full Name: nc_inq_grpname_full 46
3.7 Find the Length of a Group’s Full Name: nc_inq_grpname_len.. 47
3.8 Find a Group’s Parent: nc_inq_grp_parent..................... 48
3.9 Find a Group by Name: nc_inq_grp-ncid 48
3.10 Find a Group by its Fully-qualified Name: nc_inq_grp_full_ncid
... 49
3.11 Create a New Group: nc_def_grp............cooiiiiii. .. 50
Dimensions..................... ... 53
4.1 Dimensions Introduction 53
4.2 Create a Dimension: nc_def_dim..................... 53
4.3 Get a Dimension ID from Its Name: nc_inq_dimid............. 54
4.4 Inquire about a Dimension: nc_inq_-dim Family 55
4.5 Rename a Dimension: nc_rename_dim......................... 56
4.6 Find All Unlimited Dimension IDs: nc_ing_unlimdims 57
User Defined Data Types..................... 59
5.1 User Defined Types Introduction............... 59
5.2 Learn the IDs of All Types in Group: nc_inq_typeids.......... 59
5.3 Find a Typeid from Group and Name: nc_inq_typeid 60
5.4 Learn About a User Defined Type: nc_ing_type................ 61
5.5 Learn About a User Defined Type: nc_inq_user_type........... 62
5.6 Compound Types Introduction................................ 63
5.7 Creating a Compound Type: nc_def_compound................ 64
5.8 Inserting a Field into a Compound Type: nc_insert_compound
... 65
5.9 Inserting an Array Field into a Compound Type:
nc_insert_array_compoundo i 66
5.10 Learn About a Compound Type: nc_ing_compound 69
5.11 Learn the Name of a Compound Type: nc_inq_compound_name
... 71

5.12 Learn the Size of a Compound Type: nc_inq_compound_size.. 71
5.13 Learn the Number of Fields in a Compound Type:

nc_ing_compound_nfields i 72
5.14 Learn About a Field of a Compound Type:

nc_ing-compound_field....... 72
5.15 Find the Name of a Field in a Compound Type:

nc_ing_compound_fieldname 73
5.16 Get the FieldID of a Compound Type Field:

nc_ing_compound _fieldindex oL 74
5.17 Get the Offset of a Field: nc_inq_compound_fieldoffset 74
5.18 Find the Type of a Field: nc_inq_compound_fieldtype 75
5.19 Find the Number of Dimensions in an Array Field:

nc_ing_compound_fieldndims........... 76
5.20 Find the Sizes of Dimensions in an Array Field:

nc_ing-compound_fielddim_sizes oL 76
5.21 Variable Length Array Introduction.......................... 7

5.22 Define a Variable Length Array (VLEN): nc_def_vlen......... 78

5.23 Learning about a Variable Length Array (VLEN) Type:

NC_INQ_VIEN . . oo 79
5.24 Releasing Memory for a Variable Length Array (VLEN) Type:
Ne_free_vIem 80
5.25 Releasing Memory for an Array of Variable Length Array
(VLEN) Type: nc_free_vlen........ ..., 81
5.26 Opaque Type Introduction........... 81
5.27 Creating Opaque Types: nc_def_opaque 81
5.28 Learn About an Opaque Type: nc_ing_opaque................ 82
5.29 Enum Type Introduction............ ..o 83
5.30 Creating a Enum Type: nc_def_enum......................... 83
5.31 Inserting a Field into a Enum Type: nc_insert_enum.......... 85
5.32 Learn About a Enum Type: nc_ingq_enum 87
5.33 Learn the Name of a Enum Type: nc_inq_enum_member 88
5.34 Learn the Name of a Enum Type: nc_inq_enum_ident 89
Variables 91
6.1 Introductiono 91
6.2 Language Types Corresponding to netCDF external data types
... 91
6.3 NetCDF-3 Classic and 64-Bit Offset Data Types............... 92
6.4 NetCDF-4 Atomic Types.......ovuiiiiiiiiiiiiieannn. 92
6.5 Create a Variable: nc_def _var................... ..., 93
6.6 Define Chunking Parameters for a Variable:
nc_def_var_chunking.............. ..o, 95
6.7 Learn About Chunking Parameters for a Variable:
nc_ing_var_chunking...............ccoiiiiiiiiiiiiiioa... 97
6.8 Set HDF5 Chunk Cache for a Variable: nc_set_var_chunk_cache
... 99
6.9 Get the HDF5 Chunk Cache Settings for a Variable:
nc_get_var_chunk_cache.......... o L 100
6.10 Define Fill Parameters for a Variable: nc_def_var_fill..... 101
6.11 Learn About Fill Parameters for a Variable: nc_inq_var_£ill
.. 102
6.12 Define Compression Parameters for a Variable:
nc_def_var_deflate.........coiiiiiiiiiii 103
6.13 Learn About Deflate Parameters for a Variable:
nc_ing_var_deflate............ooiiiiiiiiiiii 104
6.14 Learn About Szip Parameters for a Variable: nc_inq_var_szip
.. 105
6.15 Define Checksum Parameters for a Variable:
nc_def_var_fletcher32o 106
6.16 Learn About Checksum Parameters for a Variable:
nc_inqg_var_fletcher32.......... il 107
6.17 Define Endianness of a Variable: nc_def_var_endian....... 107
6.18 Learn About Endian Parameters for a Variable:
nc_ing_var_endian............iiiiiii i 108

6.19 Get a Variable ID from Its Name: nc_ing_varid.............. 109

iii

iv NetCDF C Interface Guide

6.20 Get Information about a Variable from Its ID: nc_ing_var ... 110

6.21 Write a Single Data Value: nc_put_varl_ type............... 111
6.22 Write an Entire Variable: nc_put_var_ type 114
6.23 Write an Array of Values: nc_put_vara_ type................ 116
6.24 Write a Subsampled Array of Values: nc_put_vars_ type..... 119
6.25 Write a Mapped Array of Values: nc_put_varm_ type........ 122
6.26 Read a Single Data Value: nc_get_varl_ type................ 126
6.27 Read an Entire Variable nc_get_var_ type 128
6.28 Read an Array of Values: nc_get_vara_ type................. 130
6.29 Read a Subsampled Array of Values: nc_get_vars_ type...... 133
6.30 Read a Mapped Array of Values: nc_get_varm_ type......... 136
6.31 Reading and Writing Character String Values 140
6.31.1 Reading and Writing Character String Values in the Classic
Model . ..o 140
6.31.2 Reading and Writing Arrays of Strings................. 142
6.32 Releasing Memory for a NC_STRING: nc_free_string 143
6.33 Fill Values.......... e 144
6.34 Rename a Variable: nc_rename_var.......................... 144
6.35 Copy a Variable from One File to Another: nc_copy_var..... 145
6.36 Change between Collective and Independent Parallel Access:
NIC_ VAT _PAT _ACCESS . « e v e ettt ettt e e et ee e e et e 146
6.37 Deprecated “_ubyte” variable functions...................... 147
7 Attributes.............. 149
7.1 Introductionoiiiiiiiii 149
7.2 Create an Attribute: nc_put_att_ type 149
7.3 Get Information about an Attribute: nc_inq_att Family....... 152
7.4 Get Attribute’s Valuesinc_get_att_ type 154
7.5 Copy Attribute from One NetCDF to Another: nc_copy_att .. 156
7.6 Rename an Attribute: nc_rename_att......................... 158
7.7 Delete an Attribute: nc_del_att, 159
Appendix A Summary of C Interface........ 161
Appendix B NetCDF 3 to NetCDF 4 Transition
Guide................. 167
B.1 Introduction............ .o 167
B.2 NetCDF-4 and HDF5. ... oo 167
B.3 Backward Compatibility 167
B.4 The Classic and the Expanded NetCDF Data Models........ 168
B.5 Using NetCDF-4.0 with the Classic and 64-bit Offset Formats
.. 169
B.6 Creating a NetCDF-4/HDF5 File.....................o... .. 169
B.7 Using NetCDF-4.0 with the Classic Model 169
B.8 Use of the Expanded Model Impacts Fortran Portability 169

B.9 The C++ API Does Not Handle Expanded Model in this Release
.. 170

Appendix C NetCDF 2 to NetCDF 3 C
Transition Guide.........

C.1 Overview of C interface changes

C.2 The New C lInterface ...,
C.3 Function Naming Conventions................ ...

C.4 Type CONvETSIONottt
C.5 Error handlingo

C.6 NC_LONG and NC_INTo
C.7 What’s Missing?. ...

This document describes the C interface to the netCDF library; it applies to netCDF
version 4.1.2-betal and was last updated on 12 July 2010.

For a complete description of the netCDF format and utilities see Section “Top” in The
NetCDEF Users Guide.

Chapter 1: Use of the NetCDF Library 3

1 Use of the NetCDF Library

You can use the netCDF library without knowing about all of the netCDF interface. If you
are creating a netCDF dataset, only a handful of routines are required to define the necessary
dimensions, variables, and attributes, and to write the data to the netCDF dataset. (Even
less is needed if you use the ncgen utility to create the dataset before running a program
using netCDF library calls to write data.) Similarly, if you are writing software to access
data stored in a particular netCDF object, only a small subset of the netCDF library is
required to open the netCDF dataset and access the data. Authors of generic applications
that access arbitrary netCDF datasets need to be familiar with more of the netCDF library.

In this chapter we provide templates of common sequences of netCDF calls needed for
common uses. For clarity we present only the names of routines; omit declarations and error
checking; omit the type-specific suffixes of routine names for variables and attributes; indent
statements that are typically invoked multiple times; and use ... to represent arbitrary
sequences of other statements. Full parameter lists are described in later chapters.

1.1 Creating a NetCDF Dataset

Here is a typical sequence of netCDF calls used to create a new netCDF dataset:

nc_create /* create netCDF dataset: enter define mode */
ncL&éf_dim /* define dimensions: from name and length */
ncLééf_var /* define variables: from name, type, ... */
nc;éﬁt_att /* put attribute: assign attribute values */

nc_enéééf /* end definitions: leave define mode */
nc;éﬁt_var /* provide values for variables */

nc_close /* close: save new netCDF dataset */

Only one call is needed to create a netCDF dataset, at which point you will be in
the first of two netCDF modes. When accessing an open netCDF dataset, it is either
in define mode or data mode. In define mode, you can create dimensions, variables, and
new attributes, but you cannot read or write variable data. In data mode, you can access
data and change existing attributes, but you are not permitted to create new dimensions,
variables, or attributes.

One call to nc_def_dim is needed for each dimension created. Similarly, one call to
nc_def_var is needed for each variable creation, and one call to a member of the nc_put_att
family is needed for each attribute defined and assigned a value. To leave define mode and
enter data mode, call nc_enddef.

Once in data mode, you can add new data to variables, change old values, and change
values of existing attributes (so long as the attribute changes do not require more storage
space). Single values may be written to a netCDF variable with one of the members of the
nc_put_varl family, depending on what type of data you have to write. All the values of a

4 NetCDF C Interface Guide

variable may be written at once with one of the members of the nc_put_var family. Arrays
or array cross-sections of a variable may be written using members of the nc_put_vara fam-
ily. Subsampled array sections may be written using members of the nc_put_vars family.
Mapped array sections may be written using members of the nc_put_varm family. (Sub-
sampled and mapped access are general forms of data access that are explained later.)

Finally, you should explicitly close all netCDF datasets that have been opened for writing
by calling nc_close. By default, access to the file system is buffered by the netCDF library.
If a program terminates abnormally with netCDF datasets open for writing, your most
recent modifications may be lost. This default buffering of data is disabled by setting the
NC_SHARE flag when opening the dataset. But even if this flag is set, changes to attribute
values or changes made in define mode are not written out until nc_sync or nc_close is
called.

1.2 Reading a NetCDF Dataset with Known Names

Here we consider the case where you know the names of not only the netCDF datasets, but
also the names of their dimensions, variables, and attributes. (Otherwise you would have
to do "inquire" calls.) The order of typical C calls to read data from those variables in a
netCDF dataset is:

nc_open /* open existing netCDF dataset */
nc;iﬁq_dimid /* get dimension IDs */
nc;iﬁq_varid /* get variable IDs */
nc;éét_att /* get attribute values */
nc_get_var /* get values of variables */
nc_clééé /* close netCDF dataset */

First, a single call opens the netCDF dataset, given the dataset name, and returns a
netCDF ID that is used to refer to the open netCDF dataset in all subsequent calls.

Next, a call to nc_inq_dimid for each dimension of interest gets the dimension ID from
the dimension name. Similarly, each required variable ID is determined from its name by a
call to nc_inqg_varid Once variable IDs are known, variable attribute values can be retrieved
using the netCDF ID, the variable ID, and the desired attribute name as input to a member
of the nc_get_att family (typically nc_get_att_text or nc_get_att_double) for each desired
attribute. Variable data values can be directly accessed from the netCDF dataset with
calls to members of the nc_get_varl family for single values, the nc_get_var family for entire
variables, or various other members of the nc_get_vara, nc_get_vars, or nc_get_varm families
for array, subsampled or mapped access.

Finally, the netCDF dataset is closed with nc_close. There is no need to close a dataset
open only for reading.

Chapter 1: Use of the NetCDF Library 5)

1.3 Reading a netCDF Dataset with Unknown Names

It is possible to write programs (e.g., generic software) which do such things as processing
every variable, without needing to know in advance the names of these variables. Similarly,
the names of dimensions and attributes may be unknown.

Names and other information about netCDF objects may be obtained from netCDF
datasets by calling inquire functions. These return information about a whole netCDF
dataset, a dimension, a variable, or an attribute. The following template illustrates how
they are used:

nc_open /* open existing netCDF dataset */
nc;iﬁq /* find out what is in it */
nc_inq_dim /* get dimension names, lengths */
nc;iﬁq_var /* get variable names, types, shapes */
nc_ing_attname /* get attribute names */
nc;iﬁq_att /* get attribute types and lengths */
nc;éét_att /* get attribute values */
nc_get_var /* get values of variables */
nc_clééé /* close netCDF dataset */

As in the previous example, a single call opens the existing netCDF dataset, returning
a netCDF ID. This netCDF ID is given to the nc_inq routine, which returns the number
of dimensions, the number of variables, the number of global attributes, and the ID of the
unlimited dimension, if there is one.

All the inquire functions are inexpensive to use and require no I/0, since the information
they provide is stored in memory when a netCDF dataset is first opened.

Dimension IDs use consecutive integers, beginning at 0. Also dimensions, once created,
cannot be deleted. Therefore, knowing the number of dimension IDs in a netCDF dataset
means knowing all the dimension IDs: they are the integers 0, 1, 2, ...up to the number of
dimensions. For each dimension ID, a call to the inquire function nc_inqg_dim returns the
dimension name and length.

Variable IDs are also assigned from consecutive integers 0, 1, 2, ... up to the number of
variables. These can be used in nc_ing_var calls to find out the names, types, shapes, and
the number of attributes assigned to each variable.

Once the number of attributes for a variable is known, successive calls to nc_ing-attname
return the name for each attribute given the netCDF ID, variable ID, and attribute number.
Armed with the attribute name, a call to nc_inq_att returns its type and length. Given the
type and length, you can allocate enough space to hold the attribute values. Then a call to
a member of the nc_get_att family returns the attribute values.

6 NetCDF C Interface Guide

Once the IDs and shapes of netCDF variables are known, data values can be accessed by
calling a member of the nc_get_varl family for single values, or members of the nc_get_var,
nc_get_vara, nc_get_vars, or nc_get_varm for various kinds of array access.

1.4 Adding New Dimensions, Variables, Attributes

An existing netCDF dataset can be extensively altered. New dimensions, variables, and
attributes can be added or existing ones renamed, and existing attributes can be deleted.
Existing dimensions, variables, and attributes can be renamed. The following code template
lists a typical sequence of calls to add new netCDF components to an existing dataset:

nc_open /* open existing netCDF dataset */
nc;éédef /* put it into define mode */
ncLééf_dim /* define additional dimensions (if any) */
nc;ééf_var /* define additional variables (if any) */
nc;éﬁt_att /* define additional attributes (if any) */
nc_eﬁééef /* check definitions, leave define mode */
nc_put_var /* provide values for new variables */
nc_close /* close netCDF dataset */

A netCDF dataset is first opened by the nc_open call. This call puts the open dataset
in data mode, which means existing data values can be accessed and changed, existing
attributes can be changed (so long as they do not grow), but nothing can be added. To add
new netCDF dimensions, variables, or attributes you must enter define mode, by calling
nc_redef. In define mode, call nc_def_dim to define new dimensions, nc_def_var to define
new variables, and a member of the nc_put_att family to assign new attributes to variables
or enlarge old attributes.

You can leave define mode and reenter data mode, checking all the new definitions for
consistency and committing the changes to disk, by calling nc_enddef. If you do not wish
to reenter data mode, just call nc_close, which will have the effect of first calling nc_enddef.

Until the nc_enddef call, you may back out of all the redefinitions made in define mode
and restore the previous state of the netCDF dataset by calling nc_abort. You may also use
the nc_abort call to restore the netCDF dataset to a consistent state if the call to nc_enddef
fails. If you have called nc_close from definition mode and the implied call to nc_enddef
fails, nc_abort will automatically be called to close the netCDF dataset and leave it in its
previous consistent state (before you entered define mode).

For netCDF-4/HDF5 format files, define mode is still important, but the user does not
have to called nc_enddef - it is called automatically when needed. It may also be called by
the user.

In netCDF-4/HDFS5 files, there are some settings which can only be modified during the
very first define mode of the file. For example the compression level of a variable may be

Chapter 1: Use of the NetCDF Library 7

set only after the nc_def_var call and before the next nc_enddef call, whether it is called by
the user explicitly, or when the user tries to read or write some data.

At most one process should have a netCDF dataset open for writing at one time. The
library is designed to provide limited support for multiple concurrent readers with one
writer, via disciplined use of the nc_sync function and the NC_SHARE flag. If a writer makes
changes in define mode, such as the addition of new variables, dimensions, or attributes,
some means external to the library is necessary to prevent readers from making concurrent
accesses and to inform readers to call nc_sync before the next access.

1.5 Error Handling

The netCDF library provides the facilities needed to handle errors in a flexible way. Each
netCDF function returns an integer status value. If the returned status value indicates an
error, you may handle it in any way desired, from printing an associated error message and
exiting to ignoring the error indication and proceeding (not recommended!). For simplicity,
the examples in this guide check the error status and call a separate function, handle_err(),
to handle any errors. One possible definition of handle_err() can be found within the
documentation of nc_strerror (see Section 2.3 [nc_strerror|, page 14).

The nc_strerror function is available to convert a returned integer error status into an
error message string.

Occasionally, low-level 1/O errors may occur in a layer below the netCDF library. For
example, if a write operation causes you to exceed disk quotas or to attempt to write to
a device that is no longer available, you may get an error from a layer below the netCDF
library, but the resulting write error will still be reflected in the returned status value.

1.6 Compiling and Linking with the NetCDF Library

Details of how to compile and link a program that uses the netCDF C or FORTRAN
interfaces differ, depending on the operating system, the available compilers, where the
netCDF library and include files are installed, and whether or not you are using shared
libraries. Nevertheless, we provide here examples of how to compile and link a program
that uses the netCDF library on a Unix platform, so that you can adjust these examples to
fit your installation.

Every C file that references netCDF functions or constants must contain an appropriate
#include statement before the first such reference:

#include <netcdf.h>

Unless the netcdf.h file is installed in a standard directory where the C compiler always
looks, you must use the -I option when invoking the compiler, to specify a directory where
netcdf.h is installed, for example:

cc -c¢ -I/usr/local/netcdf/include myprogram.c

Alternatively, you could specify an absolute path name in the #include statement, but
then your program would not compile on another platform where netCDF is installed in a
different location.

Unless the netCDF library is installed in a standard directory where the linker always
looks, you must use the -L and -1 options to link an object file that uses the netCDF library.

8 NetCDF C Interface Guide

If the netCDF library was configured with the —enable-shared flag, and the operating
system supports shared libraries, then it should be possible to link an application program
using a relatively simple command. For example:

cc -o myprogram myprogram.o -L/usr/local/netcdf/lib -lnetcdf

It should be noted that on some operating systems, when using shared libraries, the
application itself may need to be compiled using some form of PIC (position independent
code) flag; the particular flag will depend on the C compiler used. You should try it first
without any PIC flag, and if that fails, then check with the system administrator about the
proper form of PIC flag to use.

In addition, for some C compilers (e.g. Sun’s cc compiler) it is necessary to specify
runtime paths to the relevant libnetcdf.so. This can be accomplished in one of two ways.

1. Add the path to the directory containing libnetcdf.so to the LD_LIBRARY_PATH
environment variable. This path is searched at runtime to locate any needed shared
library. This might be accomplished, for example, by the following shell command
(assuming that libnetcdf.so is in /usr/local/netcdf/lib).

LD_LIBRARY_PATH="/usr/local/netcdf/lib:$LD_LIBRARY_PATH"
export LD_LIBRARY_PATH

2. Set the so-called runtime path when the application is linked so that the absolute paths
of all needed shared libraries is included in the application binary. For gcc under Linus,
this is usually automatic. For C compilers on Solaris (and probably other operating
systems) the runtime path must be specified at link time. The command in this case
might look like this.

cc -o myprogram myprogram.o -L/usr/local/metcdf/lib -lnetcdf -R/usr/local/netcdf/1:

Note that the -R flag is also C compiler dependent. For gce and Linux, for example,
the specification is usually of this form.

cc ... -Wl,-rpath,/usr/local/netcdf/lib
Other compilers may use other flags to specify this. Check with the local system
administrator.

If shared libraries are not supported or are not being used for some reason, then it is
necessary to include all the dependent libraries in the compile command. For example, for
a netCDF-4 enabled library, it will be necessary to link with two HDF5 libraries, at least
one compression library, and (on some systems) the math library.
cc -o myprogram myprogram.o -L/usr/local/netcdf/lib -L/usr/local/hdf5/1ib -lnetcdf -1h

Other configuration features (e.g. DAP support or parallel I0) may require additional
libraries.
A complete list of necessary libraries can be obtained by executing the “nc-config —libs”
command. For example:
./nc-config --libs
might return something like this:
-L/tmp/install/spock/lib -lnetcdf -L/upc/share/stdinstall/local/spock/lib
-1hdf5_hl -1hdf5 -L/upc/share/stdinstall/local/spock/lib -1z -1m
-L/upc/share/stdinstall/local/spock/lib -lcurl -L/usr/kerberos/1ib64
-L/upc/share/stdinstall/local/spock/1lib

Chapter 1: Use of the NetCDF Library 9

-lidn -1ssl -lcrypto -lldap -1lrt -1lssl -lcrypto -1dl -1z -1z
Obviously there is some redundancy in this list, so it can be reduced somewhat to produce
this slightly simpler list.

-L/tmp/install/spock/lib -lnetcdf
-L/upc/share/stdinstall/local/spock/1ib -1hdf5 -1hdf5_hl -1z -lcurl
-L/usr/kerberos/1ib64 -lcrypto -lssl

-1d1 -lidn -1lldap -1m -1rt

Chapter 2: Datasets 11

2 Datasets

This chapter presents the interfaces of the netCDF functions that deal with a netCDF
dataset or the whole netCDF library.

A netCDF dataset that has not yet been opened can only be referred to by its dataset
name. Once a netCDF dataset is opened, it is referred to by a netCDF ID, which is a small
non-negative integer returned when you create or open the dataset. A netCDF ID is much
like a file descriptor in C or a logical unit number in FORTRAN. In any single program,
the netCDF IDs of distinct open netCDF datasets are distinct. A single netCDF dataset
may be opened multiple times and will then have multiple distinct netCDF IDs; however
at most one of the open instances of a single netCDF dataset should permit writing. When
an open netCDF dataset is closed, the ID is no longer associated with a netCDF dataset.

Functions that deal with the netCDF library include:
e Get version of library.

e Get error message corresponding to a returned error code.

The operations supported on a netCDF dataset as a single object are:
e Create, given dataset name and whether to overwrite or not.
e Open for access, given dataset name and read or write intent.
e Put into define mode, to add dimensions, variables, or attributes.
e Take out of define mode, checking consistency of additions.
e Close, writing to disk if required.

e Inquire about the number of dimensions, number of variables, number of global at-
tributes, and ID of the unlimited dimension, if any.

e Synchronize to disk to make sure it is current.
e Set and unset nofill mode for optimized sequential writes.

e After a summary of conventions used in describing the netCDF interfaces, the rest of
this chapter presents a detailed description of the interfaces for these operations.

2.1 NetCDF Library Interface Descriptions

Each interface description for a particular netCDF function in this and later chapters con-
tains:

e a description of the purpose of the function;

e a C function prototype that presents the type and order of the formal parameters to
the function;

e a description of each formal parameter in the C interface;

e a list of possible error conditions; and

e an example of a C program fragment calling the netCDF function (and perhaps other
netCDF functions).

The examples follow a simple convention for error handling, always checking the error
status returned from each netCDF function call and calling a handle_error function in case
an error was detected. For an example of such a function, see Section 2.3 [nc_strerror],
page 14.

12

NetCDF C Interface Guide

2.2 Parallel Access for NetCDF Files

To use parallel access, open or create the file with nc_open_par (see Section 2.10

[nc_open_par], page 24) or nc_create_par (see Section 2.7 [nc_create_par|, page 20).

The mode flag NC_PNETCDF will be automatically turned on for classic or 64-bit offset
files opened or created with the parallel access functions.

The following example shows the creation of a file using parallel access with a netCDF-
4/HDF5 file, and how a program might write data to such a file.

#include "netcdf.h"
#include <mpi.h>
#include <assert.h>
#include "hdf5.h"
#include <string.h>
#include <stdlib.h>

#define BAIL(e) do { \

printf("Bailing out in file %s, line %d, error:%s.\n", __FILE__,
return e; \

} while (0)

#define FILE "test_par.nc"

#define NDIMS 2

#define DIMSIZE 24

#define QTR_DATA (DIMSIZE*DIMSIZE/4)
#define NUM_PROC 4

int

main(int argc, char **argv)

{

/* MPI stuff. */

int mpi_namelen;

char mpi_name [MPI_MAX_PROCESSOR_NAME] ;
int mpi_size, mpi_rank;

MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;

/* Netcdf-4 stuff. x/
int ncid, v1id, dimids[NDIMS];
size_t start[NDIMS], count[NDIMS];

int data[DIMSIZE*DIMSIZE], j, i, res;

/* Initialize MPI. x/

MPI_Init(&argc,&argv);

MPI_Comm_size (MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank);
MPI_Get_processor_name (mpi_name, &mpi_namelen) ;

__LINE

pa—

nc_strerror

Chapter 2: Datasets 13

printf ("mpi_name: %s size: %d rank: %d\n", mpi_name,
mpi_size, mpi_rank);

/* Create a parallel netcdf-4 file. */
if ((res = nc_create_par(FILE, NC_NETCDF4|NC_MPII0O, comm,
info, &ncid)))
BAIL(res);

/* Create two dimensions. */

if ((res = nc_def_dim(ncid, "d1", DIMSIZE, dimids)))
BAIL(res);

if ((res = nc_def_dim(ncid, "d2", DIMSIZE, &dimids[1])))
BAIL(res);

/* Create one var. */
if ((res = nc_def_var(ncid, "vi1", NC_INT, NDIMS, dimids, &vi1id)))
BAIL(res);

if ((res = nc_enddef (ncid)))
BAIL(res);

/* Set up slab for this process. */

start[0] = mpi_rank * DIMSIZE/mpi_size;
start[1] = 0;

count [0] = DIMSIZE/mpi_size;

count[1] = DIMSIZE;

printf ("mpi_rank=Yd start[0]=%d start[1]=)id count[0]=%d count[1]=Yd\n",
mpi_rank, start[0], start[1], count[0], count[1]);

/* Create phony data. We’re going to write a 24x24 array of ints,
in 4 sets of 144. %/
printf ("mpi_rank*QTR_DATA=Yd (mpi_rank+1)*QTR_DATA-1=%d\n",
mpi_rank*QTR_DATA, (mpi_rank+1)*QTR_DATA);
for (i=mpi_rank*QTR_DATA; i<(mpi_rank+1)*QTR_DATA; i++)
data[i] = mpi_rank;

/*if ((res = nc_var_par_access(ncid, v1id, NC_COLLECTIVE)))
BAIL(res) ;*/

if ((res = nc_var_par_access(ncid, v1id, NC_INDEPENDENT)))
BAIL(res);

/* Write slabs of phony data. */
if ((res = nc_put_vara_int(ncid, vlid, start, count,
&data[mpi_rank*QTR_DATA])))
BAIL(res);

/* Close the netcdf file. */

14 NetCDF C Interface Guide

if ((res = nc_close(ncid)))
BAIL(res);

/* Shut down MPI. x/
MPI_Finalize();

return O;

2.3 Get error message corresponding to error status:
nc_strerror

The function nc_strerror returns a static reference to an error message string corresponding

to an integer netCDF error status or to a system error number, presumably returned by

a previous call to some other netCDF function. The list of netCDF error status codes is
available in the appropriate include file for each language binding.

Usage
const char * nc_strerror(int ncerr);

ncerr An error status that might have been returned from a previous call to some
netCDF function.

Errors

If you provide an invalid integer error status that does not correspond to any netCDF error
message or or to any system error message (as understood by the system strerror function),
nc_strerror returns a string indicating that there is no such error status.

Example

Here is an example of a simple error handling function that uses nc_strerror to print the
error message corresponding to the netCDF error status returned from any net CDF function
call and then exit:

#include <netcdf.h>

void handle_error(int status) {

if (status != NC_NOERR) {
fprintf (stderr, "%s\n", nc_strerror(status));
exit(-1);
}

2.4 Get netCDF library version: nc_inq_libvers

The function nc_inq_libvers returns a string identifying the version of the netCDF library,
and when it was built.

Chapter 2: Datasets 15

Usage

const char * nc_ing_libvers(void);

Errors

This function takes no arguments, and thus no errors are possible in its invocation.

Example
Here is an example using nc_ing_libvers to print the version of the netCDF library with
which the program is linked:

#include <netcdf.h>

printf ("%s\n", nc_ing_libvers());

2.5 Create a NetCDF Dataset: nc_create

This function creates a new netCDF dataset, returning a netCDF ID that can subsequently
be used to refer to the netCDF dataset in other netCDF function calls. The new netCDF
dataset opened for write access and placed in define mode, ready for you to add dimensions,
variables, and attributes.

A creation mode flag specifies:
e whether to overwrite any existing dataset with the same name,
e whether access to the dataset is shared,

e whether this file should be in netCDF classic format (the default), the new 64-bit offset
format (use NC_64BIT_OFFSET), or NC_NETCDF4 for a netCDF-4/HDF5 file.

Usage

NOTE: When creating a netCDF-4 file HDF5 error reporting is turned off, if it is on. This
doesn’t stop the HDF5 error stack from recording the errors, it simply stops their display
to the user through stderr.

int nc_create (const char* path, int cmode, int *ncidp);
path The file name of the new netCDF dataset.

cmode The creation mode flag. The following flags are available: NC_NOCLOBBER,
NC_SHARE, NC_64BIT_OFFSET, NC_NETCDF4, NC_CLASSIC_MODEL.

Setting NC_NOCLOBBER means you do not want to clobber (overwrite) an
existing dataset; an error (NC_EEXIST) is returned if the specified dataset
already exists.

The NC_SHARE flag is appropriate when one process may be writing the
dataset and one or more other processes reading the dataset concurrently; it
means that dataset accesses are not buffered and caching is limited. Since the
buffering scheme is optimized for sequential access, programs that do not ac-
cess data sequentially may see some performance improvement by setting the
NC_SHARE flag. This flag is ignored for netCDF-4 files. (See below.)

16

ncidp

Errors

NetCDF C Interface Guide

Setting NC_64BIT_OFFSET causes netCDF to create a 64-bit offset format
file, instead of a netCDF classic format file. The 64-bit offset format imposes
far fewer restrictions on very large (i.e. over 2 GB) data files. See Section
“Large File Support” in The NetCDF Users Guide.

A zero value (defined for convenience as NC_.CLOBBER) specifies the default
behavior: overwrite any existing dataset with the same file name and buffer and
cache accesses for efficiency. The dataset will be in netCDF classic format. See
Section “NetCDF Classic Format Limitations” in The NetCDF Users Guide.

Setting NC_.NETCDF4 causes netCDF to create a HDF5/NetCDF-4 file.

Setting NC_CLASSIC_MODEL causes netCDF to enforce the classic data
model in this file. (This only has effect for netCDF-4/HDF5 files, as classic
and 64-bit offset files always use the classic model.) When used with
NC_NETCDF4, this flag ensures that the resulting netCDF-4/HDF5 file may
never contain any new constructs from the enhanced data model. That is,
it cannot contain groups, user defined types, multiple unlimited dimensions,
or new atomic types. The advantage of this restriction is that such files are
guaranteed to work with existing netCDF software.

Pointer to location where returned netCDF ID is to be stored.

nc_create returns the value NC_NOERR if no errors occurred. Possible causes of errors

include:

e Passing

a dataset name that includes a directory that does not exist.

e Specifying a dataset name of a file that exists and also specifying NC_NOCLOBBER.

e Specifying a meaningless value for the creation mode.

e Attempting to create a netCDF dataset in a directory where you don’t have permission
to create files.

Return Codes

NC_NOERR
NC_ENOMEM

NC_EHDFERR

NC_EFILEME

No error.
System out of memory.
HDF5 error (netCDF-4 files only).

TA
Error writing netCDF-4 file-level metadata in HDF5 file. (netCDF-4 files only).

Examples

In this example we create a netCDF dataset named foo.nc; we want the dataset to be
created in the current directory only if a dataset with that name does not already exist:

#incl

ude <netcdf.h>

Chapter 2: Datasets 17

int status;
int ncid;

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);
In this example we create a netCDF dataset named foo_large.nc. It will be in the 64-bit
offset format.

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo_large.nc", NC_NOCLOBBER|NC_64BIT_QOFFSET, &ncid);
if (status !'= NC_NOERR) handle_error(status);

In this example we create a netCDF dataset named foo_HDF5.nc. It will be in the HDF5
format.

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo_HDF5.nc", NC_NOCLOBBER|NC_NETCDF4, &ncid);
if (status !'= NC_NOERR) handle_error(status);

In this example we create a netCDF dataset named foo_HDF5_classic.nc. It will be in
the HDF5 format, but will not allow the use of any netCDF-4 advanced features. That is,
it will conform to the classic netCDF-3 data model.

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo_HDF5_classic.nc", NC_NOCLOBBER|NC_NETCDF4|NC_CLASSIC_MODEL, &n
if (status !'= NC_NOERR) handle_error(status);

A variant of nc_create, nc__create (note the double underscore) allows users to specify
two tuning parameters for the file that it is creating. These tuning parameters are not
written to the data file, they are only used for so long as the file remains open after an
nc__create. See Section 2.6 [nc__create], page 17.

2.6 Create a NetCDF Dataset With Performance Options:
nc__create

This function is a variant of nc_create, nc__create (note the double underscore) allows users
to specify two tuning parameters for the file that it is creating. These tuning parameters
are not written to the data file, they are only used for so long as the file remains open after
an nc__create.

18 NetCDF C Interface Guide

This function creates a new netCDF dataset, returning a netCDF ID that can subse-
quently be used to refer to the netCDF dataset in other netCDF function calls. The new
netCDF dataset opened for write access and placed in define mode, ready for you to add
dimensions, variables, and attributes.

A creation mode flag specifies whether to overwrite any existing dataset with the same
name and whether access to the dataset is shared, and whether this file should be in netCDF
classic format (the default), or the new 64-bit offset format.

Usage

int nc__create(const char *path, int cmode, size_t initialsz,
size_t *bufrsizehintp, int *ncidp);

path The file name of the new netCDF dataset.

cmode The creation mode flag. The following flags are available:
NC_NOCLOBBER, NC_SHARE, and NC_64BIT_OFFSET, NC_NETCDF4,
NC_CLASSIC_MODEL.

Setting NC_ZNOCLOBBER means you do not want to clobber (overwrite) an
existing dataset; an error (NC_EEXIST) is returned if the specified dataset
already exists.

The NC_SHARE flag is appropriate when one process may be writing the
dataset and one or more other processes reading the dataset concurrently; it
means that dataset accesses are not buffered and caching is limited. Since the
buffering scheme is optimized for sequential access, programs that do not ac-
cess data sequentially may see some performance improvement by setting the
NC_SHARE flag. This flag is ignored for netCDF-4 files. (See below.)

Setting NC_64BIT_OFFSET causes netCDF to create a 64-bit offset format
file, instead of a netCDF classic format file. The 64-bit offset format imposes
far fewer restrictions on very large (i.e. over 2 GB) data files. See Section
“Large File Support” in The NetCDF Users Guide.

A zero value (defined for convenience as NC_CLOBBER) specifies the default
behavior: overwrite any existing dataset with the same file name and buffer and
cache accesses for efficiency. The dataset will be in netCDF classic format. See
Section “NetCDF Classic Format Limitations” in The NetCDF Users Guide.

Setting NC_NETCDF4 causes netCDF to create a HDF5/NetCDF-4 file.

Setting NC_CLASSIC_MODEL causes netCDF to enforce the classic data
model in this file. (This only has effect for netCDF-4/HDF5 files, as classic
and 64-bit offset files always use the classic model.) When used with
NC_NETCDF4, this flag ensures that the resulting netCDF-4/HDF5 file may
never contain any new constructs from the enhanced data model. That is,
it cannot contain groups, user defined types, multiple unlimited dimensions,
or new atomic types. The advantage of this restriction is that such files are
guaranteed to work with existing netCDF software.

Chapter 2: Datasets 19

initialsz

On some systems, and with custom I/O layers, it may be advantageous to set
the size of the output file at creation time. This parameter sets the initial size
of the file at creation time.

bufrsizehintp

ncidp

Errors

nc_create re
include:

e Passing

The argument referenced by bufrsizehintp controls a space versus time tradeoff,
memory allocated in the netcdf library versus number of system calls.

Because of internal requirements, the value may not be set to exactly the value
requested. The actual value chosen is returned by reference.

Using the value NC_SIZEHINT_DEFAULT causes the library to choose a de-
fault. How the system chooses the default depends on the system. On many
systems, the "preferred I/O block size" is available from the stat() system call,
struct stat member st_blksize. If this is available it is used. Lacking that, twice
the system pagesize is used.

Lacking a call to discover the system pagesize, we just set default bufrsize to
8192.

The bufrsize is a property of a given open netcdf descriptor ncid, it is not a
persistent property of the netcdf dataset.

Pointer to location where returned netCDF ID is to be stored.

turns the value NC_NOERR if no errors occurred. Possible causes of errors

a dataset name that includes a directory that does not exist.

e Specifying a dataset name of a file that exists and also specifying NC_NOCLOBBER.

e Specifying a meaningless value for the creation mode.

e Attemp

ting to create a netCDF dataset in a directory where you don’t have permission

to create files.

Return Codes

NC_NOERR
NC_ENOMEM

NC_EHDFERR

NC_EFILEME

No error.
System out of memory.
HDF5 error (netCDF-4 files only).

TA
Error writing netCDF-4 file-level metadata in HDF5 file. (netCDF-4 files only).

Examples

In this example we create a netCDF dataset named foo.nc; we want the dataset to be
created in the current directory only if a dataset with that name does not already exist:

20 NetCDF C Interface Guide

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status !'= NC_NOERR) handle_error(status);

In this example we create a netCDF dataset named foo_large.nc; we want the dataset to
be created in the current directory only if a dataset with that name does not already exist.
We also specify that bufrsize and initial size for the file.

#include <netcdf.h>

int status;

int ncid;

int intialsz = 2048;
int *bufrsize;

*bufrsize = 1024;
status = nc__create("foo.nc", NC_NOCLOBBER, initialsz, bufrsize, &ncid);
if (status !'= NC_NOERR) handle_error(status);

2.7 Create a NetCDF Dataset With Performance Options:
nc_create_par

This function is a variant of nc_create, nc_create_par allows users to open a file on a MPI/IO

or MPI/Posix parallel file system.

The parallel parameters are not written to the data file, they are only used for so long
as the file remains open after an nc_create_par.

This function creates a new netCDF dataset, returning a netCDF ID that can subse-
quently be used to refer to the netCDF dataset in other netCDF function calls. The new
netCDF dataset opened for write access and placed in define mode, ready for you to add
dimensions, variables, and attributes.

If the NC_NETCDF1 flag is used, the HDF5 library is used for parallel I/O. If not, the
parallel-netcdf library is used.

When a file is created for parallel access, collective operations are the default. To use
independent access on a variable, See Section 6.36 [nc_var_par_access|, page 146.

Usage

int nc_create_par(const char *path, int cmode, MPI_Comm comm,
MPI_Info info, int ncidp);

path The file name of the new netCDF dataset.

cmode Either the NC_MPIIO or NC_MPIPOSIX flags may be present if the
NC_NETCDF4 flag is used.

The NC_SHARE flag is ignored.

Chapter 2: Datasets 21

comm The MPI_Comm object returned by the MPI layer.

info The MPI_Info object returned by the MPI layer, if MPI/IO is being used, or 0
if MPI/Posix is being used.

ncidp Pointer to location where returned netCDF ID is to be stored.

Return Codes

NC_NOERR No error.

NC_EPARINIT
Could not initialize parallel access at the HDF5 layer.

NC_EFILEMETA
HDF5 layer cannot handle create or root group open.

NC_EEXIST
Specifying a dataset name of a file that exists and also specifying
NC_NOCLOBBER.

NC_EINVAL
Bad value for the creation mode.

NC_EHDFERR
Unexpected error from the HDF5 layer.

Examples
#include <netcdf.h>
int status;
int ncid;
*bufrsize = 1024;

status = nc__create("foo.nc", NC_NOCLOBBER, initialsz, bufrsize, &ncid);
if (status != NC_NOERR) handle_error(status);

2.8 Open a NetCDF Dataset for Access: nc_open

The function nc_open opens an existing netCDF dataset for access. It determines the
underlying file format automatically. Use the same call to open a netCDF classic, 64-bit
offset, or netCDF-4 file.

Usage
int nc_open (const char *path, int omode, int *ncidp);
path File name for netCDF dataset to be opened. When DAP support is enabled,
then the path may be an OPeNDAP URL rather than a file path.
omode A zero value (or NC_NOWRITE) specifies the default behavior: open the

dataset with read-only access, buffering and caching accesses for efficiency

22

ncidp

Errors

When openi

NetCDF C Interface Guide

Otherwise, the open mode is NC_WRITE, NC_SHARE, or
NC_WRITE|INC_SHARE. Setting the NC_WRITE flag opens the
dataset with read-write access. ("Writing" means any kind of change to
the dataset, including appending or changing data, adding or renaming
dimensions, variables, and attributes, or deleting attributes.)

The NC_SHARE flag is only used for netCDF classic and 64-bit offset files. It
is appropriate when one process may be writing the dataset and one or more
other processes reading the dataset concurrently; it means that dataset accesses
are not buffered and caching is limited. Since the buffering scheme is optimized
for sequential access, programs that do not access data sequentially may see
some performance improvement by setting the NC_SHARE flag.

It is not necessary to pass any information about the format of the file being
opened. The file type will be detected automatically by the netCDF library.

If a the path is a DAP URL, then the open mode is read-only. Setting
NC_WRITE will be ignored.

Pointer to location where returned netCDF ID is to be stored.

ng a netCDF-4 file HDF5 error reporting is turned off, if it is on. This doesn’t

stop the HDF5 error stack from recording the errors, it simply stops their display to the
user through stderr.

nc_open

returns the value NC_NOERR if no errors occurred. Otherwise, the returned

status indicates an error. Possible causes of errors include:
e The specified netCDF dataset does not exist.

e A meaningless mode was specified.

Return Codes

NC_NOERR
NC_NOMEM
NC_EHDFERR

NC_EDIMMET

NC_ENOCOMP

No error.

Out of memory.

HDF5 error. (NetCDF-4 files only.)

A
Error in netCDF-4 dimension metadata. (NetCDF-4 files only.)

0IND
(NetCDF-4 files only.)

Example

Here is an example using nc_open to open an existing netCDF dataset named foo.nc for
read-only, non-shared access:

#include <netcdf.h>

Chapter 2: Datasets 23

int status;
int ncid;

status = nc_open("foo.nc", 0, &ncid);
if (status != NC_NOERR) handle_error(status);

2.9 Open a NetCDF Dataset for Access with Performance
Tuning: nc__open

A function opens a netCDF dataset for access with an additional performance tuning pa-

rameter. When DAP support is enabled, it is possible to open a DAP data source through

this interface, but it is deprecated because all of the performance tuning parameters are
ignored. The standard nc_open interface should be used instead.

Usage

int nc__open(const char *path, int mode, size_t *bufrsizehintp, int *ncidp);
path File name for netCDF dataset to be opened.
omode A zero value (or NC_NOWRITE) specifies the default behavior: open the

dataset with read-only access, buffering and caching accesses for efficiency

Otherwise, the open mode is NC_WRITE, NC_SHARE, or
NC_WRITE|INC_SHARE. Setting the NC_WRITE flag opens the
dataset with read-write access. ("Writing" means any kind of change to
the dataset, including appending or changing data, adding or renaming
dimensions, variables, and attributes, or deleting attributes.) The NC_SHARE
flag is appropriate when one process may be writing the dataset and one or
more other processes reading the dataset concurrently; it means that dataset
accesses are not buffered and caching is limited. Since the buffering scheme is
optimized for sequential access, programs that do not access data sequentially
may see some performance improvement by setting the NC_SHARE flag.

bufrsizehintp
The argument referenced by bufrsizehintp controls a space versus time tradeoff,
memory allocated in the netcdf library versus number of system calls.

Because of internal requirements, the value may not be set to exactly the value
requested. The actual value chosen is returned by reference.

Using the value NC_SIZEHINT_DEFAULT causes the library to choose a de-
fault. How the system chooses the default depends on the system. On many
systems, the "preferred 1/O block size" is available from the stat() system call,
struct stat member st_blksize. If this is available it is used. Lacking that, twice
the system pagesize is used.

Lacking a call to discover the system pagesize, we just set default bufrsize to

8192.

The bufrsize is a property of a given open netcdf descriptor ncid, it is not a
persistent property of the netcdf dataset.

ncidp Pointer to location where returned netCDF ID is to be stored.

24 NetCDF C Interface Guide

Errors
nc__open returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The specified netCDF dataset does not exist.

e A meaningless mode was specified.

Example
Here is an example using nc__open to open an existing netCDF dataset named foo.nc for
read-only, non-shared access:

#include <netcdf.h>

int status;
int ncid;
size_t bufrsize;

*bufrsize = 1024;
status = nc_open("foo.nc", 0, &bufrsize, &ncid);
if (status != NC_NOERR) handle_error(status);

2.10 Open a NetCDF Dataset for Parallel Access

This function opens a netCDF-4 dataset for parallel access.

For netcdf-4/HDF5 files, the HDF5 library parallel I/0 is used. This opens the file using
either MPI-IO or MPI-POSIX.

DAP access is not allowed with parallel I/0.
When netCDF opens a file for parallel access, collective operations are the default. To

use independent access on a variable, See Section 6.36 [nc_var_par_access|, page 146.
Usage

int nc_open_par(const char #*path, int mode, MPI_Comm comm,
MPI_Info info, int *ncidp);

path File name for netCDF dataset to be opened.
omode Either the NC_MPIIO or NC_MPIPOSIX flags may be present for a netCDF-
4/HDFS5 file.

The flag NC_.WRITE opens the dataset with read-write access. ("Writing"
means any kind of change to the dataset, including appending or changing
data, adding or renaming dimensions, variables, and attributes, or deleting
attributes.)

All other flags are ignored or not allowed. The NC_NETCDF4 flag is not
required, as the file type is detected when the file is opened.
comm MPI_Comm object returned by the MPI layer.

info MPI_Info object returned by the MPI layer, or NULL if MPI-POSIX access is
desired.

Chapter 2: Datasets 25

ncidp Pointer to location where returned netCDF ID is to be stored.

Return Codes
NC_NOERR No error.

The specified netCDF dataset does not exist.

A meaningless mode was specified.

Example

Here is an example (from nc_test4/tst_parallel2.c) using nc_open_par.

/* Reopen the file and check it. */
if (nc_open_par(file_name, NC_NOWRITE, comm, info, &ncid)) ERR;

/* Read all the slabs this process is responsible for. */
for (i = 0; i < NUM_SLABS / mpi_size; i++)

{

start[0] = NUM_SLABS / mpi_size * mpi_rank + i;

/* Read one slab of data. */

if (nc_get_vara_int(ncid, varid, start, count, data_in)) ERR;
}

2.11 Put Open NetCDF Dataset into Define Mode: nc_redef

The function nc_redef puts an open netCDF dataset into define mode, so dimensions, vari-
ables, and attributes can be added or renamed and attributes can be deleted.

Usage

For netCDF-4 files (i.e. files created with NC_NETCDF4 in the cmode, see Section 2.5
[nc_create], page 15), it is not necessary to call nc_redef unless the file was also created
with NC_STRICT_NC3. For straight-up netCDF-4 files, nc_redef is called automatically,
as needed.

For all netCDF-4 files, the root ncid must be used. This is the ncid returned by nc_open
and nc_create, and points to the root of the hierarchy tree for netCDF-4 files.

int nc_redef (int ncid);

ncid netCDF ID, from a previous call to nc_open or nc_create.

Errors
nc_redef returns the value NC_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

e The specified netCDF dataset is already in define mode. This error code will only be
returned for classic and 64-bit offset format files.

e The specified netCDF dataset was opened for read-only.
e The specified netCDF ID does not refer to an open netCDF dataset.

26 NetCDF C Interface Guide

Errors

NC_NOERR No error.

NC_EBADID
Bad ncid.

NC_EBADGRPID
The ncid must refer to the root group of the file, that is, the group returned
by nc_open or nc_create. (see Section 2.8 [nc_open], page 21 see Section 2.5
[nc_create], page 15).

NC_EINDEFINE
Already in define mode.

NC_EPERM File is read-only.

Example

Here is an example using nc_redef to open an existing netCDF dataset named foo.nc and
put it into define mode:

#include <netcdf.h>

int status;
int ncid;

status = nc_open("foo.nc", NC_WRITE, &ncid); /* open dataset */
if (status != NC_NOERR) handle_error(status);

status = nc_redef(ncid); /* put in define mode */
if (status !'= NC_NOERR) handle_error(status);

2.12 Leave Define Mode: nc_enddef

The function nc_enddef takes an open netCDF dataset out of define mode. The changes
made to the netCDF dataset while it was in define mode are checked and committed to disk
if no problems occurred. Non-record variables may be initialized to a "fill value" as well.
See Section 2.18 [nc_set_fill], page 34. The netCDF dataset is then placed in data mode, so
variable data can be read or written.

It’s not necessary to call nc_enddef for netCDF-4 files. With netCDF-4 files, nc_enddef
is called when needed by the netcdf-4 library. User calls to nc_enddef for netCDF-4 files
still flush the metadata to disk.

This call may involve copying data under some circumstances. For a more extensive
discussion see Section “File Structure and Performance” in The NetCDFE' Users Guide.

For netCDF-4/HDF5 format files there are some variable settings (the compression,
endianness, fletcher32 error correction, and fill value) which must be set (if they are going
to be set at all) between the nc_def_var and the next nc_enddef. Once the nc_enddef is
called, these settings can no longer be changed for a variable.

Chapter 2: Datasets 27

Usage
int nc_enddef (int ncid);

ncid NetCDF ID, from a previous call to nc_open or nc_create. If you use a group
id, the enddef will apply to the entire file. That all, the enddef will not just
end define mode in one group, but in the entire file.

Errors
nc_enddef returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The specified netCDF dataset is not in define mode.

e The specified netCDF ID does not refer to an open netCDF dataset.

e The size of one or more variables exceed the size constraints for whichever variant of
the file format is in use). See Section “Large File Support” in The NetCDF' Users
Guide.

Example

Here is an example using nc_enddef to finish the definitions of a new netCDF dataset named
foo.nc and put it into data mode:

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);

/* create dimensions, variables, attributes */

status = nc_enddef(ncid); /*leave define modex/
if (status != NC_NOERR) handle_error(status);

2.13 Leave Define Mode with Performance Tuning:
nc__enddef

The function nc__enddef takes an open netCDF dataset out of define mode. The changes
made to the netCDF dataset while it was in define mode are checked and committed to disk
if no problems occurred. Non-record variables may be initialized to a "fill value" as well.
See Section 2.18 [nc_set_fill], page 34. The netCDF dataset is then placed in data mode, so
variable data can be read or written.

This call may involve copying data under some circumstances. For a more extensive
discussion see Section “File Structure and Performance” in The NetCDF Users Guide.

Caution: this function exposes internals of the netcdf version 1 file format. Users should
use nc_enddef in most circumstances. This function may not be available on future netcdf
implementations.

28 NetCDF C Interface Guide

The current netcdf file format has three sections, the "header" section, the data section
for fixed size variables, and the data section for variables which have an unlimited dimension
(record variables).

The header begins at the beginning of the file. The index (offset) of the beginning of
the other two sections is contained in the header. Typically, there is no space between
the sections. This causes copying overhead to accrue if one wishes to change the size of
the sections, as may happen when changing names of things, text attribute values, adding
attributes or adding variables. Also, for buffered i/o, there may be advantages to aligning
sections in certain ways.

The minfree parameters allow one to control costs of future calls to nc_redef, nc_enddef
by requesting that minfree bytes be available at the end of the section.

The align parameters allow one to set the alignment of the beginning of the corresponding
sections. The beginning of the section is rounded up to an index which is a multiple of the
align parameter. The flag value ALIGN_CHUNK tells the library to use the bufrsize (see
above) as the align parameter. It has nothing to do with the chunking (multidimensional
tiling) features of netCDF-4.

The file format requires mod 4 alignment, so the align parameters are silently rounded
up to multiples of 4. The usual call,

nc_enddef (ncid) ;
is equivalent to
nc__enddef (ncid, 0, 4, 0, 4);

The file format does not contain a "record size" value, this is calculated from the sizes
of the record variables. This unfortunate fact prevents us from providing minfree and
alignment control of the "records" in a netcdf file. If you add a variable which has an
unlimited dimension, the third section will always be copied with the new variable added.

Usage

int nc__enddef (int ncid, size_t h_minfree, size_t v_align,
size_t v_minfree, size_t r_align);

ncid NetCDF ID, from a previous call to nc_open or nc_create.

h_minfree
Sets the pad at the end of the "header" section.

v_align Controls the alignment of the beginning of the data section for fixed size vari-
ables.

v_minfree
Sets the pad at the end of the data section for fixed size variables.

r_align Controls the alignment of the beginning of the data section for variables which
have an unlimited dimension (record variables).

Chapter 2: Datasets 29

Errors
nc__enddef returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The specified netCDF dataset is not in define mode.

e The specified netCDF ID does not refer to an open netCDF dataset.

e The size of one or more variables exceed the size constraints for whichever variant of
the file format is in use). See Section “Large File Support” in The NetCDF Users
Guide.

Example
Here is an example using nc_enddef to finish the definitions of a new netCDF dataset named
foo.nc and put it into data mode:

#include <netcdf.h>

int status;

int ncid;

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status !'= NC_NOERR) handle_error(status);

/* create dimensions, variables, attributes */

status = nc_enddef(ncid); /*leave define modex/
if (status !'= NC_NOERR) handle_error(status);

2.14 Close an Open NetCDF Dataset: nc_close

The function nc_close closes an open netCDF dataset.

If the dataset in define mode, nc_enddef will be called before closing. (In this case, if
nc_enddef returns an error, nc_abort will automatically be called to restore the dataset to
the consistent state before define mode was last entered.) After an open netCDF dataset
is closed, its netCDF ID may be reassigned to the next netCDF dataset that is opened or
created.

Usage
For netCDF-4 files, the ncid of the root group must be passed into nc_close.

int nc_close(int ncid);

ncid NetCDF 1D, from a previous call to nc_open or nc_create.

Errors

nc_close returns the value NC_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

e Define mode was entered and the automatic call made to nc_enddef failed.

30 NetCDF C Interface Guide

e The specified netCDF ID does not refer to an open netCDF dataset.
NC_NOERR No error.

NC_EBADID
Invalid id passed.

NC_EBADGRPID
ncid did not contain the root group id of this file. (NetCDF-4 only).

Example

Here is an example using nc_close to finish the definitions of a new netCDF dataset named
foo.nc and release its netCDF ID:

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);

/* create dimensions, variables, attributes */

status = nc_close(ncid); /* close netCDF dataset */
if (status != NC_NOERR) handle_error(status);

2.15 Inquire about an Open NetCDF Dataset: nc_inq
Family

Members of the nc_inq family of functions return information about an open netCDF
dataset, given its netCDF ID. Dataset inquire functions may be called from either define
mode or data mode. The first function, nc_ing, returns values for the number of dimen-
sions, the number of variables, the number of global attributes, and the dimension ID of
the dimension defined with unlimited length, if any. The other functions in the family each
return just one of these items of information.

For C, these functions include nc_inq, nc_inq-ndims, nc_inq_nvars, nc_inq-natts, and
nc_inq-unlimdim. An additional function, nc_inq-format, returns the (rarely needed) for-
mat version.

No I/O is performed when these functions are called, since the required information is
available in memory for each open netCDF dataset.

Usage
int nc_inq (int ncid, int *ndimsp, int *nvarsp, int *ngattsp,
int *unlimdimidp);
int nc_ing_ndims (int ncid, int *ndimsp);
int nc_ing_nvars (int ncid, int *nvarsp);

int nc_ing_natts (int ncid, int *ngattsp);

Chapter 2: Datasets 31

int nc_ing_unlimdim (int ncid, int *unlimdimidp);
int nc_inq_format (int ncid, int *formatp);

ncid NetCDF ID, from a previous call to nc_open or nc_create.

ndimsp Pointer to location for returned number of dimensions defined for this netCDF
dataset.

nvarsp Pointer to location for returned number of variables defined for this netCDF
dataset.

ngattsp Pointer to location for returned number of global attributes defined for this
netCDF dataset.

unlimdimidp
Pointer to location for returned ID of the unlimited dimension, if there is one

for this netCDF dataset. If no unlimited length dimension has been defined, -1
is returned.

formatp Pointer to location for returned format version, one of NC_FORMAT_CLASSIC,
NC_FORMAT_64BIT, NC_.FORMAT_NETCDF4, NC_.FORMAT _NETCDF4_CLASSIC.

Errors
All members of the nc_inq family return the value NC_NOERR if no errors occurred. Oth-
erwise, the returned status indicates an error. Possible causes of errors include:

e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_inq to find out about a netCDF dataset named foo.nc:
#include <netcdf.h>

int status, ncid, ndims, nvars, ngatts, unlimdimid;

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_inq(ncid, &ndims, &nvars, &ngatts, &unlimdimid);
if (status != NC_NOERR) handle_error(status);

2.16 Synchronize an Open NetCDF Dataset to Disk:
nc_sync
The function nc_sync offers a way to synchronize the disk copy of a netCDF dataset with
in-memory buffers. There are two reasons you might want to synchronize after writes:
e To minimize data loss in case of abnormal termination, or

e To make data available to other processes for reading immediately after it is written.
But note that a process that already had the dataset open for reading would not see
the number of records increase when the writing process calls nc_sync; to accomplish
this, the reading process must call nc_sync.

32 NetCDF C Interface Guide

This function is backward-compatible with previous versions of the netCDF library. The
intent was to allow sharing of a netCDF dataset among multiple readers and one writer, by
having the writer call nc_sync after writing and the readers call nc_sync before each read.
For a writer, this flushes buffers to disk. For a reader, it makes sure that the next read
will be from disk rather than from previously cached buffers, so that the reader will see
changes made by the writing process (e.g., the number of records written) without having
to close and reopen the dataset. If you are only accessing a small amount of data, it can be
expensive in computer resources to always synchronize to disk after every write, since you
are giving up the benefits of buffering.

An easier way to accomplish sharing (and what is now recommended) is to have the writer
and readers open the dataset with the NC_SHARE flag, and then it will not be necessary to
call nc_sync at all. However, the nc_sync function still provides finer granularity than the
NC_SHARE flag, if only a few netCDF accesses need to be synchronized among processes.

It is important to note that changes to the ancillary data, such as attribute values, are
not propagated automatically by use of the NC_SHARE flag. Use of the nc_sync function
is still required for this purpose.

Sharing datasets when the writer enters define mode to change the data schema requires
extra care. In previous releases, after the writer left define mode, the readers were left
looking at an old copy of the dataset, since the changes were made to a new copy. The
only way readers could see the changes was by closing and reopening the dataset. Now the
changes are made in place, but readers have no knowledge that their internal tables are now
inconsistent with the new dataset schema. If netCDF datasets are shared across redefinition,
some mechanism external to the netCDF library must be provided that prevents access by
readers during redefinition and causes the readers to call nc_sync before any subsequent
access.

When calling nc_sync, the netCDF dataset must be in data mode. A netCDF dataset
in define mode is synchronized to disk only when nc_enddef is called. A process that is
reading a netCDF dataset that another process is writing may call nc_sync to get updated
with the changes made to the data by the writing process (e.g., the number of records
written), without having to close and reopen the dataset.

Data is automatically synchronized to disk when a netCDF dataset is closed, or whenever
you leave define mode.

Usage

int nc_sync(int ncid);
ncid NetCDF ID, from a previous call to nc_open or nc_create.
Errors

nc_sync returns the value NC_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

e The netCDF dataset is in define mode.
e The specified netCDF ID does not refer to an open netCDF dataset.

Chapter 2: Datasets 33

Example

Here is an example using nc_sync to synchronize the disk writes of a netCDF dataset named
foo.nc:

#include <netcdf.h>

int status;
int ncid;

status = nc_open("foo.nc", NC_WRITE, &ncid); /* open for writing */
if (status != NC_NOERR) handle_error(status);

/* write data or change attributes */

status = nc_sync(ncid); /* synchronize to disk */
if (status != NC_NOERR) handle_error(status);

2.17 Back Out of Recent Definitions: nc_abort

You no longer need to call this function, since it is called automatically by nc_close in case
the dataset is in define mode and something goes wrong with committing the changes. The
function nc_abort just closes the netCDF dataset, if not in define mode. If the dataset is
being created and is still in define mode, the dataset is deleted. If define mode was entered
by a call to nc_redef, the netCDF dataset is restored to its state before definition mode was
entered and the dataset is closed.

Usage

int nc_abort(int ncid);
ncid NetCDF ID, from a previous call to nc_open or nc_create.
Errors

nc_abort returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e When called from define mode while creating a netCDF dataset, deletion of the dataset
failed.

e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_abort to back out of redefinitions of a dataset named foo.nc:
#include <netcdf.h>

int ncid, status, latid;

status = nc_open("foo.nc", NC_WRITE, &ncid);/* open for writing */
if (status != NC_NOERR) handle_error(status);

34 NetCDF C Interface Guide

status = nc_redef (ncid); /* enter define mode */
if (status != NC_NOERR) handle_error(status);

status = nc_def_dim(ncid, "lat", 18L, &latid);

if (status !'= NC_NOERR) {
handle_error(status);
status = nc_abort(ncid); /* define failed, abort */
if (status !'= NC_NOERR) handle_error(status);

2.18 Set Fill Mode for Writes: nc_set_fill

This function is intended for advanced usage, to optimize writes under some circumstances
described below. The function nc_set_fill sets the fill mode for a netCDF dataset open
for writing and returns the current fill mode in a return parameter. The fill mode can
be specified as either NC_FILL or NC_NOFILL. The default behavior corresponding to
NC_FILL is that data is pre-filled with fill values, that is fill values are written when you
create non-record variables or when you write a value beyond data that has not yet been
written. This makes it possible to detect attempts to read data before it was written. For
more information on the use of fill values see Section 6.33 [Fill Values|, page 144. For
information about how to define your own fill values see Section “Attribute Conventions”
in NetCDF Users’ Guide.

The behavior corresponding to NC_NOFILL overrides the default behavior of prefilling
data with fill values. This can be used to enhance performance, because it avoids the dupli-
cate writes that occur when the netCDF library writes fill values that are later overwritten
with data.

A value indicating which mode the netCDF dataset was already in is returned. You can
use this value to temporarily change the fill mode of an open netCDF dataset and then
restore it to the previous mode.

After you turn on NC_NOFILL mode for an open netCDF dataset, you must be certain
to write valid data in all the positions that will later be read. Note that nofill mode is only
a transient property of a netCDF dataset open for writing: if you close and reopen the
dataset, it will revert to the default behavior. You can also revert to the default behavior
by calling nc_set_fill again to explicitly set the fill mode to NC_FILL.

There are three situations where it is advantageous to set nofill mode:

1. Creating and initializing a netCDF dataset. In this case, you should set nofill mode
before calling nc_enddef and then write completely all non-record variables and the
initial records of all the record variables you want to initialize.

2. Extending an existing record-oriented netCDF dataset. Set nofill mode after opening
the dataset for writing, then append the additional records to the dataset completely,
leaving no intervening unwritten records.

3. Adding new variables that you are going to initialize to an existing netCDF dataset.
Set nofill mode before calling nc_enddef then write all the new variables completely.

Chapter 2: Datasets 35

If the net CDF dataset has an unlimited dimension and the last record was written while
in nofill mode, then the dataset may be shorter than if nofill mode was not set, but this
will be completely transparent if you access the data only through the netCDF interfaces.

The use of this feature may not be available (or even needed) in future releases. Pro-
grammers are cautioned against heavy reliance upon this feature.

Usage

int nc_set_fill (int ncid, int fillmode, int *old_modep);
ncid NetCDF ID, from a previous call to nc_open or nc_create.
fillmode Desired fill mode for the dataset, either NC_NOFILL or NC_FILL.

old_modep
Pointer to location for returned current fill mode of the dataset before this call,
either NC_NOFILL or NC_FILL.

Return Codes
NC_NOERR No error.

NC_EBADID
The specified netCDF ID does not refer to an open netCDF dataset.

NC_EPERM The specified netCDF ID refers to a dataset open for read-only access.
NC_EINVAL
The fill mode argument is neither NC_NOFILL nor NC_FILL.

Example

Here is an example using nc_set_fill to set nofill mode for subsequent writes of a netCDF
dataset named foo.nc:

#include <netcdf.h>
int ncid, status, old_fill_mode;

status = nc_open("foo.nc", NC_WRITE, &ncid); /* open for writing */
if (status != NC_NOERR) handle_error(status);

/* write data with default prefilling behavior */

status = nc_set_fill(ncid, NC_NOFILL, &old_fill_mode); /* set nofill */
if (status !'= NC_NOERR) handle_error(status);

/* write data with no prefilling */

36 NetCDF C Interface Guide

2.19 Set Default Creation Format: nc_set_default_format

This function is intended for advanced users.

Starting in version 3.6, netCDF introduced a new data format, the first change in the
underlying binary data format since the netCDF interface was released. The new format,
64-bit offset format, was introduced to greatly relax the limitations on creating very large
files.

Users are warned that creating files in the 64-bit offset format makes them unreadable
by the netCDF library prior to version 3.6.0. For reasons of compatibility, users should
continue to create files in netCDF classic format.

Users who do want to use 64-bit offset format files can create them directory from
nc_create, using the proper cmode flag. (see Section 2.5 [nc_createl, page 15).

The function nc_set_default_format allows the user to change the format of the netCDF
file to be created by future calls to nc_create (or nc__create) without changing the cmode
flag.

This allows the user to convert a program to use 64-bit offset formation without changing
all calls the nc_create. See Section “Large File Support” in The NetCDF Users Guide.

Once the default format is set, all future created files will be in the desired format.

Two constants are provided in the netcdf.h file to be used with this function,
NC_FORMAT_64BIT and NC_.FORMAT_CLASSIC.

If a non-NULL pointer is provided, it is assumed to point to an int, where the existing
default format will be written.

Using nc_create with a cmode including NC_64BIT_OFFSET overrides the default for-
mat, and creates a 64-bit offset file.

Usage
int nc_set_default_format(int format, int *old_formatp);

format Valid formats include = NC_FORMAT_CLASSIC (the default),
NC_FORMAT_64BIT, and, if —enable-netcdf-4 was used during con-
figure, NC_.FORMAT_NETCDF4 and NC_.FORMAT_NETCDF4_CLASSIC

old_formatp
Either NULL (in which case it will be ignored), or a pointer to an int where
the existing default format (i.e. before being changed to the new format) will
be written. This allows you to get the existing default format while setting a
new default format.

Return Codes

NC_NOERR No error.

NC_EINVAL
Invalid format. Valid formats include NC_FORMAT_CLASSIC,
NC_FORMAT_64BIT, and, if —enable-netcdf-4 was used during configure,
NC_FORMAT_NETCDF4 and NC_FORMAT _NETCDF4_CLASSIC. Trying
to set the default format to something else will result in an invalid argument
error.

Chapter 2: Datasets 37

Example

Here is an example using nc_set_default_format to create the same file in four formats with
the same nc_create call (from libsrc4/tst_utf8.c):

#include <netcdf.h>

int ncid, varid, dimids[NDIMS];
int f;

for (f = NC_FORMAT_CLASSIC; f < NC_FORMAT_NETCDF4_CLASSIC; f++)

{
if (nc_set_default_format(f, NULL)) ERR;
if (nc_create(FILE_NAME, NC_CLOBBER, &ncid)) ERR;

2.20 Set HDF5 Chunk Cache for Future File
Opens/Creates: nc_set_chunk_cache

This function changes the default chunk cache settings in the HDF5 library for all variables
in the file. The settings apply for subsequent file opens/creates. This function does not
change the chunk cache settings of already open files.

For more information, see the documentation for the H5Pset_cache() function in the
HDF5 library at the HDF5 website: http://hdfgroup.org/HDF5/.

Usage

int nc_set_chunk_cache(size_t size, size_t nelems, float preemption);

size The total size of the raw data chunk cache, in bytes. This should be big enough
to hold multiple chunks of data.

nelems The number of chunk slots in the raw data chunk cache hash table. This should
be a prime number larger than the number of chunks that will be in the cache.

preemption
The preemtion value must be between 0 and 1 inclusive and indicates how
much chunks that have been fully read are favored for preemption. A value of
zero means fully read chunks are treated no differently than other chunks (the
preemption is strictly LRU) while a value of one means fully read chunks are
always preempted before other chunks.

Return Codes
NC_NOERR No error.

NC_EINVAL
Preemption must be between zero and one (inclusive).

http://hdfgroup.org/HDF5/

38 NetCDF C Interface Guide

Example

This example is from libsrcd /tst_files.c:

#include <netcdf.h>

#define NEW_CACHE_SIZE 32000000
#define NEW_CACHE_NELEMS 2000
#define NEW_CACHE_PREEMPTION .75

/* Change chunk cache. */
if (nc_set_chunk_cache(NEW_CACHE_SIZE, NEW_CACHE_NELEMS,
NEW_CACHE_PREEMPTION)) ERR;

/* Create a file with two dims, two vars, and two atts. */
if (nc_create(FILE_NAME, cflags|NC_CLOBBER, &ncid)) ERR;

2.21 Get the HDF5 Chunk Cache Settings for Future File
Opens/Creates: nc_get_chunk_cache

This function gets the chunk cache settings for the HDF5 library. The settings apply for

subsequent file opens/creates.

This affects the per-file chunk cache which the HDF5 layer maintains. The chunk cache
size can be tuned for better performance.

For more information, see the documentation for the H5Pget_cache() function in the
HDF5 library at the HDF5 website: http://hdfgroup.org/HDF5/.

Usage
int nc_get_chunk_cache(size_t *sizep, size_t #*nelemsp, float *preemptionp);
sizep The total size of the raw data chunk cache will be put here. If NULL, will be
ignored.

nelemsp The number of chunk slots in the raw data chunk cache hash table will be put
here. If NULL, will be ignored.

preemptionp
The preemption will be put here. The preemtion value is between 0 and 1 in-
clusive and indicates how much chunks that have been fully read are favored for
preemption. A value of zero means fully read chunks are treated no differently
than other chunks (the preemption is strictly LRU) while a value of one means
fully read chunks are always preempted before other chunks. If NULL, will be
ignored.

Return Codes

NC_NOERR No error.

http://hdfgroup.org/HDF5/

Chapter 2: Datasets 39

Example

This example is from libsrcd /tst_files.c:
#include <netcdf.h>

/* Retrieve the chunk cache settings, just for fun. */
if (nc_get_chunk_cache(&cache_size_in, &cache_nelems_in,
&cache_preemption_in)) ERR;
if (cache_size_in != NEW_CACHE_SIZE || cache_nelems_in != NEW_CACHE_NELEMS | |
cache_preemption_in != NEW_CACHE_PREEMPTION) ERR;

Chapter 3: Groups 41

3 Groups

NetCDF-4 added support for hierarchical groups within netCDF datasets.

Groups are identified with a ncid, which identifies both the open file, and the group
within that file. When a file is opened with nc_open or nc_create, the ncid for the root
group of that file is provided. Using that as a starting point, users can add new groups, or
list and navigate existing groups.

All netCDF calls take a ncid which determines where the call will take its action. For
example, the nc_def_var function takes a ncid as its first parameter. It will create a variable
in whichever group its ncid refers to. Use the root ncid provided by nc_create or nc_open
to create a variable in the root group. Or use nc_def_grp to create a group and use its ncid
to define a variable in the new group.

Variable are only visible in the group in which they are defined. The same applies to
attributes. “Global” attributes are associated with the group whose ncid is used.

Dimensions are visible in their groups, and all child groups.

Group operations are only permitted on netCDF-4 files - that is, files created with the
HDF5 flag in nc_create. (see Section 2.5 [nc_create], page 15). Groups are not compatible
with the netCDF classic data model, so files created with the NC_CLASSIC_MODEL file
cannot contain groups (except the root group).

3.1 Find a Group ID: nc_inq_ncid

Given an ncid and group name (NULL or "" gets root group), return ncid of the named
group.

Usage

int nc_ing_ncid(int ncid, const char *name, int *grp_ncid);
ncid The group id for this operation.
name A char array that holds the name of the desired group.

grp_ncid An int pointer that will receive the group id, if the group is found.

Errors

NC_NOERR No error.

NC_EBADID
Bad group id.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 21).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 21).

42 NetCDF C Interface Guide

NC_EHDFERR
An error was reported by the HDF5 layer.

Example
int root_ncid, child_ncid;

char file[] = "nc4_test.nc";

/* Open the file. */
if ((res = nc_open(file, NC_NOWRITE, &root_ncid)))
return res;

/* Get the ncid of an existing group. */
if ((res = nc_ing_ncid(root_ncid, "groupl", &child_ncid)))
return res;

3.2 Get a List of Groups in a Group: nc_inq_grps

Given a location id, return the number of groups it contains, and an array of their ncids.

Usage
int nc_inq_grps(int ncid, int *numgrps, int *ncids);
ncid The group id for this operation.
numgrps Pointer to an int which will get number of groups in this group. If NULL, it’s
ignored.
ncids Pointer to a already allocated array of ints which will receive the ids of all the

groups in this group. If NULL, it’s ignored. Call this function with NULL for
ncids parameter to find out how many groups there are.

Errors

NC_NOERR No error.

NC_EBADID
Bad group id.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open|, page 21).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 21).

NC_EHDFERR
An error was reported by the HDF5 layer.

Chapter 3: Groups 43

Example

int root_ncid, numgrps;
int *ncids;
char file[] = "nc4_test.nc";

/* Open the file. */
if ((res = nc_open(file, NC_NOWRITE, &root_ncid)))
return res;

/* Get a list of ncids for the root group. (That is, find out of
there are any groups already defined. */

if ((res = nc_inq_grps(root_ncid, &numgrps, NULL)))
return res;

ncids = malloc(sizeof (int) * numgrps);

if ((res = nc_ing_grps(root_ncid, NULL, ncids)))
return res;

3.3 Find all the Variables in a Group: nc_inq_varids

Find all varids for a location.

Usage
nc_ing_varids(int ncid, int *nvars, int *varids);
ncid The group id for this operation.
nvars The integer pointed to by this parameter will get the number of variable IDs
found.

varids An already allocated array to store the list of varids. Ignored if NULL.

Errors

NC_NOERR No error.

NC_EBADID
Bad group id.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 21).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 21).

NC_EHDFERR
An error was reported by the HDF5 layer.

44 NetCDF C Interface Guide

Example

This example is from libsrc4 /tst_vars.c.

int nvars_in, varids_in[2];

/* Open the file and make sure nc_ing_varids yeilds correct
* result. x/

if (nc_open(FILE_NAME, NC_NOWRITE, &ncid)) ERR;

if (nc_ing_varids(ncid, &nvars_in, varids_in)) ERR;

3.4 Find all Dimensions Visible in a Group: nc_inq_dimids

Find all dimids for a location. This finds all dimensions in a group, or any of its parents.

Usage

int nc_ing_dimids(int ncid, int *ndims, int *dimids, int include_parents);
ncid The group id for this operation.
dimids An already allocated array of ints when the dimids of the visible dimensions

will be stashed. Use nc_ing_ndims to find out how many dims are visible from
this group. (see Section 2.15 [nc_inq Family], page 30).

include_parents
If non-zero then all the dimensions in all parent groups will also be retrieved.

Errors

NC_NOERR No error.

NC_EBADID
Bad group id.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 21).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 21).

NC_EHDFERR
An error was reported by the HDF5 layer.

Example

This example is from libsrc4 /tst_dims.c.

Chapter 3: Groups 45

int ncid, dimid;
int ndims_in, dimids_in[MAX_DIMS];

/* Open the file and make sure nc_inq_dimids yeilds correct
* result. */

if (nc_open(FILE_NAME, NC_NOWRITE, &ncid)) ERR;

if (nc_ing_dimids(ncid, &ndims_in, dimids_in, 0)) ERR;

if (ndims_in !'= 1 || dimids_in[0] '= 0) ERR;

3.5 Find a Group’s Name: nc_inq_grpname

Given a group ID find its name. (Root group is named "/"). See Section 3.6
[nc_ing_grpname_full], page 46.

Usage
int nc_inq_grpname(int ncid, char *name);
ncid The group id for this operation.
name Pointer to allocated space of correct length. The name of the group will be

copied there. The name will be less than NC_MAX_NAME, not including a
terminating NULL byte.

Errors