The NetCDF Tutorial

NetCDF the Easy Way
NetCDF Version 4.1.2-betal
Last Updated 12 July 2010

Ed Hartnett
Unidata Program Center

Copyright (©) 2005-2009 University Corporation for Atmospheric Research

Permission is granted to make and distribute verbatim copies of this manual provided that
the copyright notice and these paragraphs are preserved on all copies. The software and any
accompanying written materials are provided “as is” without warranty of any kind. UCAR
expressly disclaims all warranties of any kind, either expressed or implied, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.

The Unidata Program Center is managed by the University Corporation for Atmospheric
Research and sponsored by the National Science Foundation. Any opinions, findings, con-
clusions, or recommendations expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

Mention of any commercial company or product in this document does not constitute an
endorsement by the Unidata Program Center. Unidata does not authorize any use of
information from this publication for advertising or publicity purposes.

Table of Contents

1 What is NetCDF? 1
1.1 The Classic NetCDF Data Model................. 1
1.1.1 Meteorological Example o i, 1
1.2 The Common Data Model and NetCDF-4 2
1.3 NetCDF Error Handling., 3
1.4 Unlimited Dimensions.o, 3
1.5 Fill Values ... 4
1.6 Tools for Manipulating NetCDF Files........................... 4
1.7 The NetCDF Programming APIs............................... 5
1.8 NetCDF Documentationc.oiiiieiiiiiieiiieaann. 6
1.9 A Note on NetCDF Versions and Formats 6
1.9.1 Classic Format i 7
1.9.2 64-bit Offset Format......... o i, 7
1.9.3 NetCDF-4/HDF5 Format.ooooiiiiiiiananan... 7
1.9.4 Sharing Data....... ..o 7
1.9.5 Classic Modelo 7

2 Example Programs 9
2.1 The simple_xy Example..............o i 9
2.1.1 simple_xy_wr.c and simple_xy_rd.c 10
2.1.1.1 SIMPle_XY_WI.C ottt 10
2.1.1.2 simple_xy_rd.C....oouuiiiii 12

2.1.2 simple_xy_wr.f and simple_xy_rd.f............. 14
2.1.2.1 simple_xy_wr.f 14
2.1.2.2 simple_xy_rd.f.. ... 16

2.1.3 simple_xy_wr.f90 and simple_xy_rd.f90.................... 18
2.1.3.1 simple_xy_wr.f90 18
2.1.3.2 simple_xy_rd.f90. 20

2.1.4 simple_xy_wr.cpp and simple_xy_rd.cpp 22
2.1.4.1 SimMpPle_ Xy _ WI.CPP vttt ettt et 22
2.1.4.2 simple_ Xy _rd.CPP -« vvvii i 23

2.2 The sfec_pres_temp Example.........o 25
2.2.1 sfc_pres_temp_wr.c and sfc_pres_temp_rd.c................ 26
2.2.1.1 sfc_pres_temp_wr.C......ouiitiiinii i 26
2.2.1.2 sfe_pres_temp_rd.C........... . 30

2.2.2 sfc_pres_temp_wr.f and sfc_pres_temp_rd.f................ 34
2.2.2.1 sfe_pres_temp_wr.f ... 34
2.2.2.2 sfc_pres_temp_rd.f... ... 38

2.2.3 sfc_pres_temp_wr.f90 and sfc_pres_temp_rd.f90............ 42
2.2.3.1 sfe_pres_temp_wr.f90 42
2.2.3.2 sfc_pres_temp_rd.f90. 45

2.2.4 sfc_pres_temp_wr.cpp and sfc_pres_temp_rd.cpp........... 48

2.2.4.1 sfCc_pres_temp_wWr.CPP .« vvvete i 48

ii The NetCDF Tutorial

2.2.4.2 sfe_pres_temp_rd.CPP . ..ot 51

2.3 The pres_temp_4D Example.......... 55
2.3.1 pres_temp_4D_wr.c and pres_temp_4D_rd.c............... Y
2.3.1.1 pres_temp-4D _Wr.C.....cooviiiiiiiiiiiiiiiii i 57
2.3.1.2 pres_temp_4D_rd.c ... 61

2.3.2 pres_temp_4D_wr.f and pres_temp_4D_rd.f................ 65
2.3.2.1 pres_temp 4D _wr.f.. ... 65
2.3.2.2 pres_temp 4D _rd.f.... ... 70

2.3.3 pres_temp_4D_wr.f90 and pres_temp_4D_rd.f90........... 73
2.3.3.1 pres_temp_4D_wr.f90. 73
2.3.3.2 pres_temp_4D_rd.f90 ... 77

2.3.4 pres_temp_4D_wr.cpp and pres_temp_4D _rd.cpp.......... 80
2.3.4.1 pres_temp 4D _WI.CPP «ovvviii 80
2.3.4.2 pres_temp_4D _1d.CPP ..t 84

3 The Functions You Need in NetCDF-3...... 87
3.1 Creating New Files and Metadata, an Overview 87
3.1.1 Creating a NetCDF Filein C............................. 87
3.1.2 Creating a NetCDF File in Fortran 77.................... 88
3.1.3 Creating a NetCDF File in Fortran 90.................... 88
3.1.4 Creating a NetCDF File in C++ ...t 89
3.2 Reading NetCDF Files of Known Structure.................... 90
3.2.1 Numbering of NetCDF IDs......... ...t 90
3.2.2 Reading a Known NetCDF Filein C...................... 90
3.2.3 Reading a Known NetCDF File in Fortran 77............. 91
3.2.4 Reading a Known NetCDF File in Fortran 90............. 91
3.2.5 Reading a Known NetCDF File in C+4.................. 91
3.3 Reading NetCDF Files of Unknown Structure 92
3.3.1 Inquiry in C. .o 92
3.3.1.1 NULL Parameters in Inquiry Functions.............. 93

3.3.2 Inquiry in Fortran 77...... 94
3.3.3 Inquiry in Fortran 90........ i 95
3.3.4 Inquiry Functions in the C++ APL.......... 96
3.4 Reading and Writing Subsets of Data.......................... 97
3.4.1 Reading and Writing Subsets of Datain C................ 97
3.4.2 Reading and Writing Subsets of Data in Fortran 77....... 98
3.4.3 Reading and Writing Subsets of Data in Fortran 90...... 100

3.4.4 Reading and Writing Subsets of Data in C++........... 101

4 API Extensions Introduced with NetCDF-4

... 103

4.1 Interoperability with HDF5o o 103
4.1.1 Reading and Editing NetCDF-4 Files with HDF5........ 103
4.1.2 Reading and Editing HDF5 Files with NetCDF-4........ 103
4.2 Multiple Unlimited Dimensions..............oooo... 104
4.3 GrOUDS ottt e 104
4.4 Compound Typesot 104
4.5 Opaque Types . ..o 104
4.6 Variable Length Arrays (VLEN) ..., 104
AT ST S . ottt 104
4.8 New Inquiry Functions.......... ... oo i, 105
4.9 Parallel I/O with NetCDF, 105
4.9.1 Parallel I/O Choices for NetCDF Users.................. 105
4.9.2 Parallel I/O with NetCDF-4..................., 105
4.9.2.1 Building NetCDF-4 for Parallel I/O 105
4.9.2.2 Opening/Creating Files for Parallel I/O 106
4.9.2.3 Collective/Independent Access...............c...o... 106

4.9.3 simple_xy_par_wr.c and simple_xy_par_rd.c.............. 106
4.9.3.1 simple_xy_par_wr.f90........ol 106
4.9.3.2 simple_xy_par_rd.fo0.......... ... oL 109

4.10 The Future of NetCDF i 111
5 NetCDF-4 Examples......................... 113
5.1 The simple_nc4d Example....... ..o 113
5.1.1 simple_nc4_wr.c and simple_ncd_rd.c.................... 113
5.1.1.1 simple_ncd_Wr.C..ooouuiini i 113
5.1.1.2 simplencd_rd.c ... 116

5.2 The simple_xy_nc4d Exampleco i i, 118
5.2.1 simple_xy_nc4_wr.c and simple_xy_nc4_rd.c.............. 119
5.2.1.1 simple Xy NCA_WI.C.wvvetne e 119
5.2.1.2 simple_xy_ncd_rd.c........ooiiiiii 121

5.2.2 simple_xy_nc4_wr.f and simple_xy_ncd_rd.f.............. 123
5.2.2.1 simple_xy_ncd_wr.f. 123
5.2.2.2 simple_xy ncd rd.f..... .. 125

5.2.3 simple_xy_ncd_wr.f90 and simple_xy_nc4_rd.f90.......... 126
5.2.3.1 simple_xy_ncd_wr.f90...... it 126
5.2.3.2 simple_xy_ncd_rd.f90....... 128

iii

Chapter 1: What is NetCDF? 1

1 What is NetCDF?

NetCDF is a set of data formats, programming interfaces, and software libraries that help
read and write scientific data files.

NetCDF was developed and is maintained at Unidata, part of the University Corporation
for Atmospheric Research (UCAR) Office of Programs (UOP). Unidata is funded primarily
by the National Science Foundation.

Unidata provides data and software tools for use in geoscience education and research.
For more information see the web sites of Unidata (http://www.unidata.ucar.edu), UOP
(http://www.uop.ucar.edu), and UCAR (http://www.ucar.edu).

This tutorial may serve as an introduction to netCDF. Full netCDF documentation is
available on-line (see Section 1.8 [Documentation], page 6).

1.1 The Classic NetCDF Data Model

The classic netCDF data model consists of variables, dimensions, and attributes. This way
of thinking about data was introduced with the very first netCDF release, and is still the
core of all netCDF files.

(In version 4.0, the netCDF data model has been expanded. See Section 1.2 [Common
Data Model], page 2.)

Variables
N-dimensional arrays of data. Variables in netCDF files can be one of six
types (char, byte, short, int, float, double). For more information see Section
“Variables” in The NetCDF Users Guide.

Dimensions
describe the axes of the data arrays. A dimension has a name and a length.
An unlimited dimension has a length that can be expanded at any time, as
more data are written to it. NetCDF files can contain at most one unlimited
dimension. For more information see Section “Dimensions” in The NetCDF
Users Guide.

Attributes
annotate variables or files with small notes or supplementary metadata. At-
tributes are always scalar values or 1D arrays, which can be associated with
either a variable or the file as a whole. Although there is no enforced limit,
the user is expected to keep attributes small. For more information see Section
“Attributes” in The NetCDF Users Guide.

For more information on the netCDF data model see Section “The NetCDF Data Model”
in The NetCDF Users Guide.

1.1.1 Meteorological Example

NetCDEF can be used to store many kinds of data, but it was originally developed for the
Earth science community.

NetCDF views the world of scientific data in the same way that an atmospheric scientist
might: as sets of related arrays. There are various physical quantities (such as pressure and
temperature) located at points at a particular latitude, longitude, vertical level, and time.

http://www.unidata.ucar.edu
http://www.uop.ucar.edu
http://www.ucar.edu

2 The NetCDF Tutorial

A scientist might also like to store supporting information, such as the units, or some
information about how the data were produced.

The axis information (latitude, longitude, level, and time) would be stored as netCDF
dimensions. Dimensions have a length and a name.

The physical quantities (pressure, temperature) would be stored as netCDF variables.
Variables are N-dimensional arrays of data, with a name and an associated set of netCDF
dimensions.

It is also customary to add one variable for each dimension, to hold the values along
that axis. These variables are call “coordinate variables.” The latitude coordinate variable
would be a one-dimensional variable (with latitude as its dimension), and it would hold the
latitude values at each point along the axis.

The additional bits of metadata would be stored as netCDF attributes.

Attributes are always single values or one-dimensional arrays. (This works out well for
a string, which is a one-dimensional array of ASCII characters.)

The pres_temp_4D example in this tutorial shows how to write and read a file containing
some four-dimensional pressure and temperature data, including all the metadata needed.
See Section 2.3 [pres_temp_4D], page 55.

1.2 The Common Data Model and NetCDF-4

With netCDF-4, the netCDF data model has been extended, in a backwards compatible
way.

The new data model, which is known as the “Common Data Model” is part of an effort
here at Unidata to find a common engineering language for the development of scientific

data solutions. It contains the variables, dimensions, and attributes of the classic data
model, but adds:

e groups A way of hierarchically organizing data, similar to directories in a Unix file
system.

e user-defined types The user can now define compound types (like C structures), enu-
meration types, variable length arrays, and opaque types.

These features may only be used when working with a netCDF-4/HDF5 file. Files
created in classic or 64-bit offset format cannot support groups or user-defined types.

With netCDF-4/HDFS5 files, the user may define groups, which may contain variables,
dimensions, and attributes. In this way, a group acts as a container for the classic netCDF
dataset. But netCDF-4/HDFS5 files can have many groups, organized hierarchically.

Each file begins with at least one group, the root group. The user may then add more
groups, receiving a new ncid for each group created.

Since each group functions as a complete netCDF classic dataset, it is possible to have
variables with the same name in two or more different groups, within the same netCDF-
4/HDF5 data file.

Dimensions have a special scope: they may me seen my all variables in their group, and
all descendant groups. This allows the user to define dimensions in a top-level group, and
use them in many sub-groups.

Chapter 1: What is NetCDF? 3

Since it may be necessary to write code which works with all types of netCDF data files,
we also introduce the ability to create netCDF-4/HDF5 files which follow all the rules of
the classic netCDF model. That is, these files are in HDF5, but will not support multiple
unlimited dimensions, user-defined types, groups, etc. They act just like a classic netCDF
file.

1.3 NetCDF Error Handling

FEach netCDF function in the C, Fortran 77, and Fortran 90 APIs returns 0 on success, in
the tradition of C. (For C++, see below).

When programming with netCDF in these languages, always check return values
of every netCDF API call. The return code can be looked up in netcdfh (for C
programmers) or netcdf.inc (for Fortran programmers), or you can use the strerror function
to print out an error message. (See Section “nc_strerror” in The NetCDF C Interface
Guide/Section “NF_STRERROR” in The NetCDF Fortran 77 Interface Guide/Section
“NFI90_STRERROR?” in The NetCDF Fortran 90 Interface Guide).

In general, if a function returns an error code, you can assume it didn’t do what you
hoped it would. The exception is the NC_ERANGE error, which is returned by any of the
reading or writing functions when one or more of the values read or written exceeded the
range for the type. (For example if you were to try to read 1000 into an unsigned byte.)

In the case of NC_LERANGE errors, the netCDF library completes the read/write oper-
ation, and then returns the error. The type conversion is handled like a C type conversion,
whether or not it is within range. This may yield bad data, but the netCDF library just
returns NC_ERANGE and leaves it up to the user to handle. (For more information about
type conversion see Section “Type Conversion” in The NetCDF C Interface Guide).

Error handling in C++ is different. For some objects, the is_valid() method should be
called. Other error handling is controlled by the NcError class. For more information see
Section “Class NcError” in The NetCDF C++ Interface Guide.

For a complete list of netCDF error codes see Section “Error Codes” in The NetCDF C
Interface Guide.

1.4 Unlimited Dimensions

Sometimes you don’t know the size of all dimensions when you create a file, or you would
like to arbitrarily extend the file along one of the dimensions.

For example, model output usually has a time dimension. Rather than specifying that
there will be forty-two output times when creating the file, you might like to create it with
one time, and then add data for additional times, until you wanted to stop.

For this purpose netCDF provides the unlimited dimension. By specifying a length of
“unlimited” when defining a dimension, you indicate to netCDF that the dimension may
be extended, and its length may increase.

In netCDF classic files, there can only be one unlimited dimension, and it must be
declared first in the list of dimensions for a variable.

For programmers, the unlimited dimension will correspond with the slowest-varying
dimension. In C this is the first dimension of an array, in Fortran, the last.

4 The NetCDF Tutorial

The third example in this tutorial, pres_temp_4D, demonstrates how to write and read
data one time step at a time along an unlimited dimension in a classic netCDF file. See
Section 2.3 [pres_temp_4D], page 55.

In netCDF-4/HDFS5 files, any number of unlimited dimensions may be used, and there
is no restriction as to where they appear in a variable’s list of dimension IDs.

For more detailed information about dimensions see Section “Dimensions” in The

NetCDF Users Guide.

1.5 Fill Values

Sometimes there are missing values in the data, and some value is needed to represent them.

For example, what value do you put in a sea-surface temperature variable for points over
land?

In netCDF, you can create an attribute for the variable (and of the same type as the
variable) called “_FillValue” that contains a value that you have used for missing data.
Applications that read the data file can use this to know how to represent these values.

Using attributes it is possible to capture metadata that would otherwise be separated
from the data. Various conventions have been established. By using a set of conventions, a
data producer is more likely to produce files that can be easily shared within the research
community, and that contain enough details to be useful as a long-term archive.

For more information on _FillValue and other attribute conventions, see Section “At-
tribute Conventions” in The NetCDF' Users Guide.

Climate and meteorological users are urged to follow the Climate and Forecast (CF)
metadata conventions when producing data files. For more information about the CF
conventions, see http://cf-pcmdi.llnl.gov.

For information about creating attributes, see Section 3.1 [Creation], page 87.

1.6 Tools for Manipulating NetCDF Files

Many existing software applications can read and manipulate netCDF files. Before writing
your own program, check to see if any existing programs meet your needs.

Two utilities come with the netCDF distribution: ncdump and ncgen. The ncdump
command reads a netCDF file and outputs ASCII in a format called CDL. The ncgen
command reads an ASCII file in CDL format, and generates a netCDF data file.

One common use for ncdump is to examine the metadata of a netCDF file, to see what
it contains. At the beginning of each example in this tutorial, an ncdump of the resulting
data file is shown. See Section 2.1 [simple_xy]|, page 9.

For more information about ncdump and ncgen see Section “NetCDF Utilities” in The
NetCDF Users Guide.

The following general-purpose tools have been found to be useful in many situations.
Some of the tools on this list are developed at Unidata. The others are developed elsewhere,
and we can make no guarantees about their continued availability or success. All of these
tools are open-source.

http://cf-pcmdi.llnl.gov

Chapter 1: What is NetCDF? 5)

UDUNITS Unidata library to help with sci- http://www.unidata.ucar.edu/software/udunits
entific units.
IDV Unidata’s Integrated Data http://www.unidata.ucar.edu/software/idv

Viewer, a 3D visualization and
analysis package (Java based).
NCL NCAR Command Language, a http://www.ncl.ucar.edu
graphics and data manipulation
package.
GrADS The Grid Analysis and Display http://grads.iges.org/grads/grads.html
System package.
NCO NetCDF Command line Opera- http://nco.sourceforge.net

tors, tools to manipulate netCDF
files.

For a list of netCDF tools that we know about see http://www.unidata.ucar.edu/netcdf/software.html
If you know of any that should be added to this list, send email to support-
netcdf@unidata.ucar.edu.

1.7 The NetCDF Programming APIs

Unidata supports netCDF APIs in C, C++, Fortran 77, Fortran 90, and Java.

The Java API is a complete implementation of netCDF in Java. It is distributed
independently of the other APIs. For more information see the netCDF Java page:
http://www.unidata.ucar.edu/software/netcdf-java. If you are writing web server
software, you should certainly be doing so in Java.

The C, C++, Fortran 77 and Fortran 90 APIs are distributed and installed when the
netCDF C library is built, if compilers exist to build them, and if they are not turned off
when configuring the netCDF build.

The C++ and Fortran APIs depend on the C API. Due to the nature of C++ and Fortran
90, users of those languages can also use the C and Fortran 77 APIs (respectively) directly.

In the netCDF-4.0 beta release, only the C API is well-tested. The Fortran APIs include
support for netCDF-4 advanced features, but need more testing, which will be added in a
future release of net CDF.

The C++ API can handle netCDF-4.0/HDF5 files, but can not yet handle advanced
netCDF-4 features. The successor to the current C++ API is under active development, and
will include support for netCDF-4 advanced features.

Full documentation exists for each API (see Section 1.8 [Documentation|, page 6).

In addition, many other language APIs exist, including Perl, Python, and Ruby. Most
of these APIs were written and supported by netCDF users. Some of them are listed on
the netCDF software page, see http://www.unidata.ucar.edu/netcdf/software.html.
Since these generally use the C API, they should work well with netCDF-4/HDF5 files, but
the maintainers of the APIs must add support for netCDF-4 advanced features.

In addition to the main netCDF-3 C API, there is an additional (older) C API, the
netCDF-2 API. This API produces exactly the same files as the netCDF-3 API - only the
API is different. (That is, users can create either classic format files, the default, or 64-bit
offset files, or netCDF-4/HDF5 files.)

http://www.unidata.ucar.edu/software/udunits
http://www.unidata.ucar.edu/software/idv
http://www.ncl.ucar.edu
http://grads.iges.org/grads/grads.html
http://nco.sourceforge.net
http://www.unidata.ucar.edu/netcdf/software.html
http://www.unidata.ucar.edu/software/netcdf-java
http://www.unidata.ucar.edu/netcdf/software.html

6 The NetCDF Tutorial

The version 2 API was the API before netCDF-3.0 came out. It is still fully supported,
however. Programs written to the version 2 API will continue to work.

Users writing new programs should use the netCDF-3 API, which contains better type
checking, better error handling, and better documentation.

The netCDF-2 API is provided for backward compatibility. Documen-
tation for the netCDF-2 API can be found on the netCDF website, see
http://www.unidata.ucar.edu/netcdf/guide_toc.html.

1.8 NetCDF Documentation

This tutorial is brief. A much more complete description of netCDF can be found in
The NetCDF Users Guide. It fully describes the netCDF model and format. For more
information see Section “Top” in The NetCDF Users Guide.

The netCDF distribution, in various forms, can be obtained from the netCDF web site:
http://www.unidata.ucar.edu/netcdf.

A porting and installation guide for the C, C++, Fortran 77, and Fortran 90 APIs de-
scribes how to build these APIs on a variety of platforms. See Section “Top” in The NetCDF
Installation and Porting Guide.

Language specific programming guides are available for netCDF for the C, C++, Fortran
77, Fortran 90, and Java APIs:

C Section “Top” in The NetCDF C Interface Guide.
C++ Section “Top” in The NetCDF C++ Interface Guide.
Fortran 77

Section “Top” in The NetCDF Fortran 77 Interface Guide.

Fortran 90
Section “Top” in The NetCDF Fortran 90 Interface Guide.

Java http://www.unidata.ucar.edu/software/netcdf-java/v2.1/Netcdf JavaUserManual.htm.

Man pages for the C, F77, and F90 interfaces, and ncgen and nc-
dump, are available on the documentation page of the netCDF web site
(http://www.unidata.ucar.edu/netcdf/docs), and are installed with the
netCDF distribution.

The latest version of all netCDF documentation can always be found at the documen-
tation page of the netCDF web site: http://www.unidata.ucar.edu/netcdf/docs

1.9 A Note on NetCDF Versions and Formats

NetCDF has changed (and improved) over its lifetime. That means the user must have
some understanding of netCDF versions.

To add to the confusion, there are versions for the APIs, and also for the data files that
they produce. The API version is the version number that appears in the tarball file that is
downloaded from the netCDF website. For example this document applied to API version
4.1.2-betal.

The good news is that all netCDF files ever written can always be read by the latest
netCDF release. That is, we guarantee backward data compatibility.

http://www.unidata.ucar.edu/netcdf/guide_toc.html
http://www.unidata.ucar.edu/netcdf
http://www.unidata.ucar.edu/software/netcdf-java/v2.1/NetcdfJavaUserManual.htm
http://www.unidata.ucar.edu/netcdf/docs
http://www.unidata.ucar.edu/netcdf/docs

Chapter 1: What is NetCDF? 7

1.9.1 Classic Format

The default format is classic format. This is the original netCDF binary format - the format
that the netCDF library has been using for almost 20 years, since its introduction with the
first release of netCDF. No special flag is needed to create a file in classic format; it is the
default.

Classic format has some strict limitations for files larger than two gigabytes. (see Section
“NetCDF Classic Format Limitations” in The NetCDF' Users Guide).

1.9.2 64-bit Offset Format

In December, 2004, version 3.6.0 of the netCDF library was released. It allows users to use
a new version of the netCDF file format which greatly expands the sizes of variables and
files which may be written.

The format which was introduced in 3.6.0 is called “64-bit Offset Format.”

Create files in this format by passing the 64-bit offset format flag to the create call (for
example, in C, set the NC_64BIT_OFFSET flag when calling the function nc_create. (see
Section “nc_create” in The NetCDF C Interface Guide).

64-bit offset is very useful for very large data files (over two gigabytes), however these files
can only be shared with those who have upgraded to version 3.6.0 (or better) of netCDF.
Earlier versions of netCDF will not be able to read these files.

1.9.3 NetCDF-4/HDF5 Format

With version 4.0 of netCDF, we introduce another new data format: netCDF-4/HDF5
format. This format is HDF5, with full use of the new dimension scales, creation ordering,
and other features of HDF5 added in its version 1.8.0 release.

As with 64-bit offset, this format is turned on when the file is created. (For example,
with the nf_netcdf4 flag in the nf_create function. see Section “nf_create” in The NetCDF
Fortran 77 Interface Guide).

1.9.4 Sharing Data

The classic format is the most portable. Classic format files can be read correctly by any
version of netCDF. A netCDF-4 user can create a classic file, and share it with a user who
has not upgraded netCDF since the version 2.3 in 1994.

64-bit offset format files can be read by any user who has at least version 3.6.0 of the
netCDF API (released in Dec., 2004).

Users must have netCDF 4.0 to read netCDF-4/HDF5 files. However, netCDF-4 does
produce backward compatible classic and 64-bit offset format files. That is, a netCDF-4.0
user can create a classic format file, and share it with researchers who are still using a old
version of netCDF. Similarly a netCDF-4.0 user can read any existing netCDF data file,
whatever version of netCDF was used to create it.

1.9.5 Classic Model

The original netCDF API represents a data model as well as a programming API. That is,
the idea of variables, attributes, and the six data types (char, byte, short, integer, float,
and double), comprises a model of how data may be stored.

8 The NetCDF Tutorial

The netCDF-4 release expands this model with groups, user-defined types, and new base
types. New functions have been added to the APIs to accommodate these extensions, but
once they are used, the file can no longer be output as a classic format file.

That is, once you use groups in your code, you can only produce netCDF-4/HDF5 files.
If you try to change the format to classic, you will get an error when you attempt to use
any of the group functions.

Since it is convenient to be able to produce files of all formats from the same code
(restricting oneself to the classic data model), a flag has been added which, when used in
the creation of a netCDF-4/HDFS5 file, will instruct the library to disallow the use of any
advanced features in the file.

This is referred to as a “classic model” netCDF-4/HDF5 file.
To get a classic model file, use the classic model flag when creating the file. For example,

in Fortran 77, use the nf_classic_model flag when calling nf_create (see Section “nf_create”
in The NetCDF Fortran 77 Interface Guide).

For more information about format issues see Section “Format” in The NetCDF Users
Guide.

Chapter 2: Example Programs 9

2 Example Programs

The netCDF example programs show how to use netCDF.

In the netCDF distribution, the “examples” directory contains examples in C, Fortran

77, Fortran 90, C++, and CDL.

There are three sets of netCDF-3 example programs in each language. Each language has
its own subdirectory under the “examples” directory (for example, the Fortran 77 examples
are in “examples/F777).

There is also one example for netCDF-4, which is only provided in the C language. This
example will only be run if the —enable-netcdf-4 option was used with configure.

The examples are built and run with the “make check” command. (For more information
on building netCDF, see Section “Top” in The NetCDF Installation and Porting Guide).

The examples create, and then read, example data files of increasing complexity.

The corresponding examples in each language create identical netCDF data files. For
example, the C program sfc_pres_temp_wr.c produces the same data file as the Fortran 77
program sfc_pres_temp_wr.f.

For convenience, the complete source code in each language can be found in this tutorial,
as well as in the netCDF distribution.

2.1 The simple_xy Example

This example is an unrealistically simple netCDF file, to demonstrate the minimum opera-
tion of the netCDF APIs. Users should seek to make their netCDF files more self-describing
than this primitive example.

As in all the netCDF tutorial examples, this example file is created by C, Fortran 77,
Fortran 90, and C++ programs, and by ncgen, which creates it from a CDL script. All
examples create identical files, “simple_xy.nc.”

The programs that create this sample file all have the base name “simple_xy_wr”, with
different extensions depending on the language.

Therefore the example files that create simple_xync can be found in:
C/simple_xy_wr.c, F77/simple_xy_wr.f, F90/simple_xy_wr.f90, CXX/simple_xy_wr.cpp,
and CDL/simple_xy_wr.cdl.

Corresponding read programs (C/simple_xy_rd.c, etc.) read the simple_xy.nc data file,
and ensure that it contains the correct values.

[

The simple_xy.nc data file contains two dimensions, “x” and “y”, and one netCDF
variable, “data.”

The utility ncdump can be used to show the contents of netCDF files. By default,
ncdump shows the CDL description of the file. This CDL description can be fed into ncgen
to create the data file.

The CDL for this example is shown below. For more information on ncdump and ncgen
see Section “NetCDF Utilities” in The NetCDF Users Guide.

netcdf simple_xy {
dimensions:
X =6 ;

10 The NetCDF Tutorial

y =12
variables:

int data(x, y) ;
data:

data =
o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71 ;
}

2.1.1 simple_xy_wr.c and simple_xy_rd.c
These example programs can be found in the netCDF distribution, under examples/C.

The example program simple_xy_wr.c creates the example data file simple_xy.nc. The
example program simple_xy_rd.c reads the data file.

2.1.1.1 simple_xy_wr.c

/* This is part of the netCDF package.
Copyright 2006 University Corporation for Atmospheric Research/Unidata.
See COPYRIGHT file for conditions of use.

This is a very simple example which writes a 2D array of
sample data. To handle this in netCDF we create two shared
dimensions, "x" and "y", and a netCDF variable, called "data".

This example demonstrates the netCDF C API. This is part of the
netCDF tutorial, which can be found at:
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial

Full documentation of the netCDF C API can be found at:
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-c

$Id: simple_xy_wr.c,v 1.12 2007/02/14 20:59:21 ed Exp $
*/
#include <stdlib.h>
#include <stdio.h>
#include <netcdf.h>

/* This is the name of the data file we will create. */
#define FILE_NAME "simple_xy.nc"

/* We are writing 2D data, a 6 x 12 grid. */
#define NDIMS 2

Chapter 2: Example Programs 11

#define NX 6
#define NY 12

/* Handle errors by printing an error message and exiting with a
* non-zero status. */
#define ERRCODE 2

#define ERR(e) {printf ("Error: %s\n", nc_strerror(e)); exit (ERRCODE);}

int

main()

{

/* When we create netCDF variables and dimensions, we get back an
* ID for each one. */

int ncid, x_dimid, y_dimid, varid;

int dimids[NDIMS];

/* This is the data array we will write. It will be filled with a
* progression of numbers for this example. */
int data_out [NX] [NY];

/* Loop indexes, and error handling. */
int x, y, retval;

/* Create some pretend data. If this wasn’t an example program, we
* would have some real data to write, for example, model

*

output. */

for (x = 0; x < NX; x++)

for (y = 0; y < NY; y++)

data_out[x] [y] = x * NY + y;

/*

* % *

/*
if

/*

if

if

/%

Always check the return code of every netCDF function call. In
this example program, any retval which is not equal to NC_NOERR
(0) will cause the program to print an error message and exit
with a non-zero return code. */

Create the file. The NC_CLOBBER parameter tells netCDF to
overwrite this file, if it already exists.*/

((retval = nc_create(FILE_NAME, NC_CLOBBER, &ncid)))
ERR(retval);

Define the dimensions. NetCDF will hand back an ID for each. */
((retval = nc_def_dim(ncid, "x", NX, &x_dimid)))

ERR(retval);

((retval = nc_def_dim(ncid, "y", NY, &y_dimid)))

ERR(retval);

The dimids array is used to pass the IDs of the dimensions of

12 The NetCDF Tutorial

* the variable. */
dimids[0] = x_dimid;
dimids[1] = y_dimid;

/* Define the variable. The type of the variable in this case is
* NC_INT (4-byte integer). */
if ((retval = nc_def_var(ncid, "data", NC_INT, NDIMS,
dimids, &varid)))
ERR(retval);

/* End define mode. This tells netCDF we are done defining
* metadata. */
if ((retval = nc_enddef(ncid)))
ERR(retval);

/* Write the pretend data to the file. Although netCDF supports
* reading and writing subsets of data, in this case we write all
* the data in one operation. */
if ((retval = nc_put_var_int(ncid, varid, &data_out[0][0])))
ERR(retval) ;

/* Close the file. This frees up any internal netCDF resources
* associated with the file, and flushes any buffers. */
if ((retval = nc_close(ncid)))
ERR(retval);

printf ("**x SUCCESS writing example file simple_xy.nc!\n");
return O;

2.1.1.2 simple_xy_rd.c

/* This is part of the netCDF package.
Copyright 2006 University Corporation for Atmospheric Research/Unidata.
See COPYRIGHT file for conditions of use.

This is a simple example which reads a small dummy array, which was
written by simple_xy_wr.c. This is intended to illustrate the use

of the netCDF C API.

This program is part of the netCDF tutorial:
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial

Full documentation of the netCDF C API can be found at:
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-c

$Id: simple_xy_rd.c,v 1.9 2006/08/17 23:00:55 russ Exp $

Chapter 2: Example Programs 13

x/

#include <stdlib.h>
#include <stdio.h>
#include <netcdf.h>

/* This is the name of the data file we will read. */
#define FILE_NAME "simple_xy.nc"

/* We are reading 2D data, a 6 x 12 grid. */
#define NX 6
#define NY 12

/* Handle errors by printing an error message and exiting with a
* non-zero status. */
#define ERRCODE 2
#define ERR(e) {printf("Error: %s\n", nc_strerror(e)); exit(ERRCODE);}

int

main()

{
/* This will be the netCDF ID for the file and data variable. */
int ncid, varid;

int data_in[NX] [NY];

/* Loop indexes, and error handling. */
int x, y, retval;

/* Open the file. NC_NOWRITE tells netCDF we want read-only access
* to the file.x*/
if ((retval = nc_open(FILE_NAME, NC_NOWRITE, &ncid)))
ERR(retval);

/* Get the varid of the data variable, based on its name. */
if ((retval = nc_inqg_varid(ncid, "data", &varid)))
ERR(retval);

/* Read the data. */
if ((retval = nc_get_var_int(ncid, varid, &data_in[0][0])))
ERR (retval) ;

/* Check the data. */
for (x = 0; x < NX; x++)
for (y = 0; y < NY; y++)
if (data_in[x][y] != x *x NY + y)
return ERRCODE;

14

}

The NetCDF Tutorial

/* Close the file, freeing all resources. */
if ((retval = nc_close(ncid)))
ERR(retval);

printf ("***x SUCCESS reading example file %s!\n", FILE_NAME);
return O;

2.1.2 simple_xy_wr.f and simple_xy_rd.f

These example programs can be found in the netCDF distribution, under examples/F77.

The example program simple_xy_wr.f creates the example data file simple_xy.nc. The
example program simple_xy_rd.f reads the data file.

2.1.2.1 simple_xy_wr.f

C
C
C

Q

This is part of the netCDF package.
Copyright 2006 University Corporation for Atmospheric Research/Unidata.
See COPYRIGHT file for conditions of use.

This is a very simple example which writes a 2D array of
sample data. To handle this in netCDF we create two shared
dimensions, "x" and "y", and a netCDF variable, called "data".

This example demonstrates the netCDF Fortran 77 API. This is part
of the netCDF tutorial, which can be found at:
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial

Full documentation of the netCDF Fortran 77 API can be found at:
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-£77

$Id: simple_xy_wr.f,v 1.11 2008/08/20 22:29:56 russ Exp $

program simple_xy_wr
implicit none
include ’netcdf.inc’

This is the name of the data file we will create.
character*(x) FILE_NAME
parameter (FILE_NAME=’simple_xy.nc’)

We are writing 2D data, a 12 x 6 grid.
integer NDIMS

parameter (NDIMS=2)

integer NX, NY

parameter (NX = 6, NY = 12)

When we create netCDF files, variables and dimensions, we get back

Chapter 2: Example Programs 15

QQaQ

Q

Q

an ID for each one.
integer ncid, varid, dimids(NDIMS)
integer x_dimid, y_dimid

This is the data array we will write. It will just be filled with
a progression of integers for this example.
integer data_out(NY, NX)

Loop indexes, and error handling.
integer x, y, retval

Create some pretend data. If this wasn’t an example program, we
would have some real data to write, for example, model output.
do x =1, NX

doy =1, NY
data_out(y, x) = (x = 1) * NY + (y - 1)
end do
end do

Always check the return code of every netCDF function call. In
this example program, any retval which is not equal to nf_noerr
(0) will call handle_err, which prints a netCDF error message, and
then exits with a non-zero return code.

Create the netCDF file. The nf_clobber parameter tells netCDF to
overwrite this file, if it already exists.

retval = nf_create(FILE_NAME, NF_CLOBBER, ncid)

if (retval .ne. nf_noerr) call handle_err(retval)

Define the dimensions. NetCDF will hand back an ID for each.
retval = nf_def_dim(ncid, "x", NX, x_dimid)

if (retval .ne. nf_noerr) call handle_err(retval)

retval = nf_def_dim(ncid, "y", NY, y_dimid)

if (retval .ne. nf_noerr) call handle_err(retval)

The dimids array is used to pass the IDs of the dimensions of
the variables. Note that in fortran arrays are stored in
column-major format.

dimids(2) = x_dimid

dimids(1) = y_dimid

Define the variable. The type of the variable in this case is
NF_INT (4-byte integer).

retval = nf_def_var(ncid, "data", NF_INT, NDIMS, dimids, varid)
if (retval .ne. nf_noerr) call handle_err(retval)

End define mode. This tells netCDF we are done defining metadata.

16

Q

The NetCDF Tutorial

retval = nf_enddef (ncid)
if (retval .ne. nf_noerr) call handle_err(retval)

Write the pretend data to the file. Although netCDF supports
reading and writing subsets of data, in this case we write all the
data in one operation.

retval = nf_put_var_int(ncid, varid, data_out)

if (retval .ne. nf_noerr) call handle_err(retval)

Close the file. This frees up any internal netCDF resources
associated with the file, and flushes any buffers.

retval = nf_close(ncid)

if (retval .ne. nf_noerr) call handle_err(retval)

print *,’*%*x SUCCESS writing example file simple_xy.nc!’
end

subroutine handle_err (errcode)
implicit none

include ’netcdf.inc’

integer errcode

print *, ’Error: ’, nf_strerror(errcode)
stop 2
end

2.1.2.2 simple_xy_rd.f

C
C
C

QQaQ Q

Q

This is part of the netCDF package.
Copyright 2006 University Corporation for Atmospheric Research/Unidata.
See COPYRIGHT file for conditions of use.

This is a simple example which reads a small dummy array, from a
netCDF data file created by the companion program simple_xy_wr.f.

This is intended to illustrate the use of the netCDF fortran 77
API. This example program is part of the netCDF tutorial, which can
be found at:
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial

Full documentation of the netCDF Fortran 77 API can be found at:
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-£77

$Id: simple_xy_rd.f,v 1.8 2007/02/14 20:59:20 ed Exp $

program simple_xy_rd
implicit none

Chapter 2: Example Programs 17

include ’netcdf.inc’

C This is the name of the data file we will read.
character*(x) FILE_NAME
parameter (FILE_NAME=’simple_xy.nc’)

C We are reading 2D data, a 12 x 6 grid.
integer NX, NY
parameter (NX = 6, NY = 12)
integer data_in(NY, NX)

C This will be the netCDF ID for the file and data variable.
integer ncid, varid

C Loop indexes, and error handling.
integer x, y, retval

Q

Open the file. NF_NOWRITE tells netCDF we want read-only access to
C the file.

retval = nf_open(FILE_NAME, NF_NOWRITE, ncid)

if (retval .ne. nf_noerr) call handle_err(retval)

C Get the varid of the data variable, based on its name.
retval = nf_inq_varid(ncid, ’data’, varid)
if (retval .ne. nf_noerr) call handle_err(retval)

C Read the data.
retval = nf_get_var_int(ncid, varid, data_in)
if (retval .ne. nf_noerr) call handle_err(retval)

C Check the data.
do x =1, NX
doy =1, NY
if (data_in(y, x) .ne. (x - 1) * NY + (y - 1)) then
print *, ’data_in(’, y, ’, ’, x, ’) = ’, data_in(y, x)
stop 2
end if
end do
end do

C Close the file, freeing all resources.
retval = nf_close(ncid)
if (retval .ne. nf_noerr) call handle_err(retval)

print *,’***x SUCCESS reading example file ’, FILE_NAME, !’
end

18 The NetCDF Tutorial

subroutine handle_err(errcode)
implicit none

include ’netcdf.inc’

integer errcode

print *, ’Error: ’, nf_strerror(errcode)
stop 2
end

2.1.3 simple_