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Fig. 1: A schematic overview of atmosphere on  May 3, 2002) (from NASA Hurricanes web-site disturbances which are need for TC genesis (V‘th)-m (Ritchie and Holland,1990)
Dec. 2005. The Japanese archipelago is http://www.nasa.gov/mission_pages/hurricanes
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experiencing record heavy snowfall on Dec. 2005. /archives/2008/h2008_nargis.html)

\_ _JJ| Fig- 6: Best tracks of tropical cyclones from 1979 to 1988 (Oouchi et al. 2006). Intra-
seasonal factors which is thought as factors of cyclogenesis are also shown,

(m Nonhydrostatic ICosahedral Atmospheric
Model: NICAM

@ High-resolution General Circulation Model suitable for weather and climate predictions
@ Global Cloud Resolving Model: grid interval less than 5 km
@ Quasi-uniform horizontal grid: Icosahedral grid

4 Non-hydrostatic equations system: a new conservative scheme: Suitable for long
term simulation
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B Advantage of Global Cloud Resolving Model

Progress in advancing weather/climate prediction has been hampered by the
difficulties involved in handling a cloud unresolved in the model resolution and the
uncertainties involved in using cumulus parameterization in a subgrid-scale of
conventional general circulation models (GCMs), since behaviors of GCMs crucially
depend on specific implementations of cumulus parameterization.
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A newly developed Global Cloud Resolving Model (GCRM), called NICAM, 1
overcomes the difficulties in existing atmospheric global models where cumulus ;
convection i not resolved and is represented in parameterized forms. 3 3

i : 7~ glevel-9: dx=14km
This research project promotes development of NICAM by aiming that NICAM is "~ : 5 Fig. 4:Representation of cumulus clouds in the glevel-10: dx=7km
practically used as a next generation weather forecasting and climate prediction o traditional low-resolution atmospheric model glevel-11: dx=3.5km
model. Toward this goal, we concentrate on improvements of representation of coWeather & Weatherstreet (UpPer) and in the high-resolution GCRM

tions. ¢

convective-precipitation systems in the tropics and the Asian monsoon region, (bottom). Left panel shows cumulus clouds in Fig. 5: The Icosahedral grids (Satoh, et al., 2008 )

N hich directly afects meteorology around Japan. the tropics viewed from space shuttle. y,

niguchi et al. (2010), in press' of IMSJ.
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@ Cyclogenesis occurs in high-
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Fig. 7: (a) Best track of cyclone Nargis (line)
from the day of TC formation (27 April 2008),
as obtained by the JTWC data center. (b-f)
Tracks of simulated cyclones (lines). Color
shading shows observed daily SST interpolated
from weekly-averaged Reynolds-SST (-:C) on
the genesis day of observed cyclone Nargis (a)
and the simulated cyclones (b-f). Solid circles
with numbers show the day and position of
each cyclone. Panels (b)-(f) show the results
of simulations with initial time of 1200 UTC on
23-27 April 2008, respectively. In the

simulations, no cyclone formed in the Bay of — N .
Bengal for initial days of 10 and 28 April 2008 E) Loc. of TC genesis (Obs.) @ Loc. of TC genesis (Sim.) (9 Loc. of TC genesis (Obs.) @ Loc of TC genesis (Sim.)
(panels not shown) Fig. 8: Latitude-Time diagram of zonally averaged zonal wind (m/s) at 850 hPa over 80-E-100-E (left panel) and outgoing long-wave radiation (OLR) (W/m2) shown by the

\_ /| \__ White-navy blue scale and surface precipitation rate (mm/h) shown by the rainbow color scale for values grater than 0:3 (mm/h) over 80 E-100E (right panel), respectively. _J

(lReproducibiIity of intra-seasonaI\ (lMJO phase vs. TC genesis ) (lReproducibiIitv of Init. disturbances for )

factors related to cyclogenesis

+ Large amp. before TC genesis (MJO)
« Strong wind In BoB before TC genesis (WB)

+ Northward migration of the area of westerly
In BoB
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Fig. 11:Temporal-spatial evolution of initial
disturbances and tropical depressions from 1200
UTC (or 1300 UTC) on 23-27 April. Blended sea
surface winds at 10 m are shown by vectors (m/s)
and infrared (IR) brightness temperature is shown
by the color scale (K, observations) and OLR
(W/m2, simulations). Observed (re-analysis) fields
obtained by JMA/JCDAS (wind) and NCEP/CPC 4 km
Global IR datasets. Other panels show the resuits of
NICAM simulations. Observed and simulated times
are shown above each figure. The color scale differs
between observed and simulated data )

+ No TC genesis occurs for the member in which
phase propagation of the M1O Is not reproduced.

Fig. 9: Temporal evolution of (a) the MJO index, defined by the projection of daily anomaly BN !
data onto the multi-variable (U850,U200,0LR) EOFs; (b) the westerly wind burst (WWB)

index, defined by the area-averaged zonal wind at 850 hPa in the area of 5:5-5N and 80-E-
100E; (c) the monsoon onset index in the Bay of Bengal, defined by the area-averaged
upper tropospheric (200-500 hPa) meridional temperature gradient in the area of 10N~
15N and 80-E-100-E; and (d) vertical shear of zonal wind at 850 hPa and 200 hPa in the
area of EQ-20'N and 80-E-100'E. Thick solid lines represent the observed index calculated

Fig. 10:PC1 and PC2 daily phase points (open circles) for the observed days (a) and simulated

days (b-) on the phase space. (a) Score calculated based on the observed (re-analysis) field.

Thick and thin lines correspond to PCs during April and May 2008, respectively. (b)-(h) show

the results of NICAM simulations with initial days of 10, 23, 24, 25, 26, 27, and 28 April 2008.

Solid circles indicate the day on which cyclone Nargis formed (a) and the day of cyclone genesis
by JMA/ICDAS (U850, U200) and NOAA (OLR, only (a) used) datasets. Thick dotted lines in each simulation (c-h) (left panel) and composite diagram of velocity potential anomaly at
and thin solid lines indicate the simulated indices for initial days of 10 and 23-28 April 2008, 200-hPa in each MIO phase. Blue shadings are correspond to the active convective region
respectively. The vertical dashed line shows the time of cyclone Nargis genesis. The timing associated with the MJO.

Qf formation of simulated cyclones is indicated by solid inverted triangles. k )

Next Generation Climate Model




