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Abstract

Multiple equilibrium solutions of a gray atmosphere are investigated for various

values of the solar constant. Two types of models are utilized in order to conduct a

comparative study: a general circulation model with simplified physical processes

(GCM) and a one-dimensional energy balance model (EBM). For intermediate

values of solar constant, both of the models indicate the existence of multiple

solutions that include the runaway greenhouse state in addition to the globally

ice-covered state and the partially ice-covered state. In the GCM results, there

is no partially ice-covered state with the ice line latitude lower than 22◦. This

indicates that the large ice cap instability discussed in previous EBM studies also

occurs in GCM. Compared to the results of EBM, the ice line of the partially

ice-covered state of GCM reaches lower latitudes. The appearance of the large ice

cap instability in our GCM is impeded by condensation heating at the ice lines.

The efficient latitudinal heat transport in the Hadley cell is considered to be a

contributing factor to this delay in ice cap expansion.
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1 Introduction

The solar constant is one of the most important parameters that determine the

climate of terrestrial planets. A state of mild climate like that of the present Earth

vanishes when the value of solar constant changes by several tens of percent, as

reviewed briefly below.

When the value of solar constant is decreased from that of the present earth,

the globally ice-covered state emerges. One-dimensional energy balance models

(EBMs) show that a slight decrease in solar constant results in ice-covered Earth

[Budyko, 1969; Sellers, 1969]. With the solar constant set at the value of present

Earth, Budyko’s EBM gives multiple equilibrium solutions: a globally ice-covered

equilibrium solution and two types of partially ice-covered solutions 1. The par-

tially ice-covered solution whose ice line is located at higher latitudes is stable and

is regarded as the climate regime of the present Earth. In contrast, the partially

ice-covered solution whose ice line is located at lower latitudes is unstable [Held

and Suarez, 1974; Cahalan and North, 1979]. This instability is referred to as the

large ice cap instability.

Ice-covered solutions are also obtained in experiments using general circulation

models (GCMs). Inspired by the snowball Earth hypothesis proposed by Hoffman

et al. [1998], Baum and Crowley [2001] performs numerical experiments with a

coupled atmosphere-ocean GCM and exemplifies the possibility of the appearance

of the globally ice-covered state under the climate conditions of the Neoproterozoic

age. In order to gain insights on the climate on ancient Mars, Abe et al. [2005]

explores possible climate states for a wide range of parameters with a terrestrial

GCM, and shows that the globally ice-covered state emerges with decreased solar

1Note that the number of equilibrium solutions and their stability depend on the setup of
EBM. The EBM of Sellers [1969] has an unstable equilibrium solution with a small ice cap. The
instability is referred to as the small ice cap instability [North, 1984].
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constant regardless of the obliquity of the planet.

When the value of the solar constant is increased, the runaway greenhouse state

emerges and the atmosphere cannot reach an equilibrium state until the entire

ocean evaporates. One-dimensional radiative-convective equilibrium models show

that there exists an upper limit to the value of outgoing longwave radiation (OLR)

emitted from the top of the atmosphere on a planet with ocean [Komabayashi,

1967; Ingersoll, 1969; Nakajima et al., 1992]. When the incident energy flux

exceeds this upper limit, no equilibrium state exists. Indeed, experiments with

GCMs employing a value of solar constant larger than this limit demonstrate that

the runaway greenhouse state is characterized by continuous increase both in the

atmospheric temperature and water vapor amount [Ishiwatari et al., 1998, 2002].

It is also known that some one-dimensional radiative-convective models have

multiple equilibrium solutions. As in EBM, the inclusion of ice-albedo feedback

produces multiple equilibrium solutions [Li et al., 1997]. Multiple equilibrium solu-

tions also result from the inclusion of the hydrologic cycle [Rennó, 1997; Sugiyama

et al., 2005]. For certain values of incoming solar radiation flux, Rennó [1997]

shows that two types of stable equilibrium solutions can be obtained: one being

an optically thin equilibrium state and the other being an optically thick equilib-

rium state. Sugiyama et al. [2005] show that the two types of solutions obtained

by Rennó [1997] exist if the derivative of relative humidity with respect to sur-

face temperature is larger than a certain critical value. It should be emphasized

that the introduction of a hydrologic cycle, in general, may change the dynamical

branch structure of the solutions, although no statistically equilibrium state which

can be regarded as corresponding to the optically thick equilibrium solutions dis-

cussed by Rennó [1997] and Sugiyama et al. [2005] is observed in the results of

GCM experiments performed by Ishiwatari et al. [2002].
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In previous studies, investigations on the climatic dependence on the value of

solar constant are carried out employing models that can only represent either

the runaway greenhouse state or the ice-covered state. In the EBMs of Budyko

[1969] and Sellers [1969], OLR is given as a linear function of surface temperature.

Hence, there is no upper limit to OLR, and so the runaway greenhouse state

cannot be described. There is a possibility that the stability of solutions for a

model which allows the occurrence of the runaway greenhouse state differs from

those of previous EBMs, since the dynamical branch structure of the solutions

may change.

In this article, the branch structure of climatic solutions ranging from the ice-

covered state to the runaway greenhouse state is examined using an EBM and a

GCM of a gray atmosphere having the same radiation properties. By adopting

the gray atmosphere, our EBM enables us to draw a branch diagram of climate

regime which includes the runaway greenhouse state. The use of the GCM allows

us to explore climate solutions with explicit representation of the atmospheric

circulation and water vapor transport. The incorporation of atmospheric motion

may result in a different climate regime diagram from that obtained by EBM. By

comparing the solutions of EBM and GCM over a wide range of solar constants,

we can determine whether a branch obtained by EBM has a corresponding one in

the climate regime diagram obtained by GCM, and vice versa. The aim of this

study is to produce a “GCM version of the Budyko-Sellers diagram.”

2 Model

The GCM utilized here is AGCM5.3 of GFD DENNOU CLUB. It is the same

model which is used by Ishiwatari et al. [1998, 2002]. Except for the incorporation

of three-dimensional atmospheric motion, the system is basically equivalent to the
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one-dimensional radiative-convective equilibrium model of Nakajima et al. [1992]

in which the existence of radiation limits is clarified and the runaway greenhouse

state is described in terms of them. It is the most basic model for a GCM; we have

chosen to retain the simplicity of the model for making an straightforward exten-

sion of previous studies to three-dimensional models. The basic features of our

GCM are briefly summarized as follows. The atmosphere consists of a condens-

able component (water vapor) and a noncondensable component (dry air). Only

water vapor absorbs and emits longwave radiation. The absorption coefficient of

water vapor is constant and independent of wavelength. Dry air is assumed to

be transparent. Cumulus convection is parameterized by a convective adjustment

scheme [Manabe et al., 1965]. Condensed water is removed from the system imme-

diately without cloud formation. The radiative effects of clouds and the scattering

of radiation are excluded. Vertical diffusion is represented by the Yamada-Meller

Level-II scheme. The entire surface is assumed to be a “swamp ocean”; heat ca-

pacity is zero and wetness is unity [Delworth and Manabe, 1988]. Heat transport

by the ocean is excluded. The surface albedo of regions whose surface temperature

is below the freezing point, 263K as adopted by Budyko [1969], is 0.5. Otherwise,

the surface albedo is zero. Neither snow accumulation, ice mass budget, nor sea

ice migration are considered. Latent heat of fusion is also excluded from the cal-

culation. This simple model configuration permits the direct comparison of our

GCM results with that of EBMs. The dynamical part of the GCM is represented

by the pseudo spectral method in the horizontal direction, and by the finite differ-

ence method with σ coordinate in the vertical direction. The spectral truncation

adopted here is the triangular truncation at wavenumber 21 (T21). The number

of vertical levels is 16 for the cases where the value of solar constant, S, is smaller

than 1450 Wm−2 and 32 for the cases where S is greater than 1450 Wm−2. The
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number of vertical levels is increased for the larger solar constant values, because

the tropopause extends to higher altitudes. With this configuration of the model

vertical levels, OLR is calculated to an accuracy of 5 Wm−2 [Ishiwatari et al.,

2002].

The EBM utilized here is the same as that of North [1975], except for the radia-

tion scheme. The radiation scheme is the same as that used in our GCM described

above, that is, the gray atmosphere of Nakajima et al. [1992]. By adopting this

radiation scheme, the value of OLR is determined to be a function of the surface

temperature on the basis of a one-dimensional radiative-convective equilibrium so-

lution. The relative humidity is given as a fixed value of 60 %, which is obtained as

a typical value in our GCM results [Ishiwatari et al., 2002]. The meridional heat

transport is calculated by the diffusion scheme of North [1975]. The value of the

heat transport coefficient is 0.5 Wm−2K−1. The value is determined such that the

EBM most closely reproduces the meridional temperature difference of the GCM

in the ice-free case with S = 1380 Wm−2. In addition to searching for the steady

solutions for the EBM, time developments of the solutions are also calculated to

investigate the existence of the runaway greenhouse state. In time-dependent prob-

lems, the value of heat capacity for a unit area is set to be 1 JK−1m−2. The value

of heat capacity can be chosen arbitrary, since it does not affect the results of ex-

amination on the existence of the runaway greenhouse state, except for zero. Zero

heat capacity cannot be adopted in the time-dependent EBM, since the tendency

term of surface temperature vanishes and surface temperature becomes indefinite.

The value of solar constant S is varied in the range between 1200 Wm−2 and

2000 Wm−2. The meridional distribution of incoming solar flux is given as the

annual and daily averages of that evaluated using the present terrestrial orbital

parameters. As for the GCM runs, four kinds of initial conditions are selected:
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the isothermal (280K) state with constant specific humidity of 10−3, a calculated

runaway greenhouse solution at 1000 day obtained with S=1600 Wm−2, a calcu-

lated partially ice-covered solution obtained with S=1300 Wm−2, and a calculated

globally ice-covered solution obtained with S=1000 Wm−2. These values are ar-

bitrary chosen. The equilibrium solutions of the EBM are obtained by the use of

the Powell hybrid method in Minpack which is available at http://www.netlib.org.

The runaway solutions of the EBM are obtained by solving the time-dependent

problem using an isothermal state having temperature of 330K or 600K as the

initial conditions. These temperature values are also arbitrary chosen.

3 Results of EBM Experiments

Figure 1 shows the relationship between solar constant and ice line latitude of

solutions obtained by the EBM. Ice line latitude at 90◦ corresponds to an ice-

free solution, and 0◦ to a globally ice-covered solution. Crosses at 90◦ indicate

nonequilibrium solutions where the system is in the runaway greenhouse state.

The gross feature of ice-covered solutions shown in Figure 1 is similar to the

results of Budyko [1969] or Sellers [1969]. In our EBM, globally ice-covered solu-

tions, indicated as branch α, are found for S ≤ 1903Wm−2 (point A). One or mul-

tiple partially ice-covered solutions are found for 1306Wm−2 ≤ S ≤ 1903Wm−2,

indicated by branches β, γ, and δ and critical points A, B, C, and D in Fig-

ure 1. Branch β intercepts globally ice-covered solutions (branch α) at point A

(S = 1903Wm−2), and branch δ is connected with ice-free equilibrium solutions

(branch ε) at point D (S = 1436Wm−2). In contrast to the results of Budyko

[1969] or Sellers [1969], the branch connections in partially ice-covered solutions

and ice-free solutions in the present study display complicated features, the details

of which will be explained below.
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The branch structure of ice-free equilibrium solutions in Figure 1 displays differ-

ent features from the results of Budyko [1969] or Sellers [1969]. Since the runaway

greenhouse state is allowed to emerge in our model, an upper limit to S must exist

in order for the ice-free equilibrium solutions to exist. Point E (S = 1441.2Wm−2)

is the critical point for the ice-free equilibrium state; no ice-free equilibrium solu-

tion can be found in our EBM at any larger values of S. The detail of the branch

structure of ice-free equilibrium solution which cannot be recognized in Figure 1

will be shown later, in Figure 2b. For the values of solar constant smaller than

that of critical point E, there are two branches of ice-free equilibrium solutions;

the first, branch ε is connected to the partially ice-covered solutions (branch δ)

at point D, and the other, branch ζ is connected to the runaway greenhouse state

at point F (S = 1310Wm−2). This is the lower limit of S for which the runaway

greenhouse state can be found, and it is also the lower limit of S for which an

ice-free equilibrium solution can exist. However, the ice-free equilibrium solutions

on branch ζ are unstable, as will be explained later in this section.

The partially ice-covered solutions belong to two kinds of branches; one is branch

γ in which the ice-covered area decreases with increasing S, and the other consists

of two branches β and δ in which the ice-covered area increases with increasing S.

As for the stability of the equilibrium solutions, the argument presented by Cahalan

and North [1979] should also be applicable for our case since the difference between

our radiative term and theirs is not expected to cause a significant difference in

the radiative heating property of the partially ice-covered state. The solutions on

branch γ are considered to be stable, while the solutions on branches β and δ are

unstable. Change of stability occurs at the critical points indicated as point B

(S =1306Wm−2) and point C (S =1447.5Wm−2). Branch δ has ice line latitudes

higher than 69◦, which is reached at point C, and branch β has ice line latitudes
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lower than 28◦, which is reached at point B. Following North [1984], the instability

corresponding to branch δ whose ice line is located at higher latitudes is referred

to as the small ice cap instability, and the instability corresponding to branch

β whose ice line is located at lower latitudes is referred to as the large ice cap

instability.

In order to clarify the branch configuration of the partially ice-covered state

and the ice-free state, the relationship between solar constant S and global mean

surface temperature Ts of the equilibrium solutions is plotted in Figure 2. Note

that the runaway greenhouse state cannot be plotted in these panels, since global

mean surface temperature is an increasing function of time for solutions in the

runaway greenhouse state. The stable branch γ of the partially ice-covered state

corresponds to the branch where global mean surface temperature increases with

solar constant in Figure 2a that extends from point B (Ts = 258K) to point C

(Ts = 298K). Branch β of the large ice cap instability corresponds to the branch

extending from point B (Ts = 258K) to point A (Ts = 254K). On this branch,

when the ice line latitude is far removed from the equator, global mean surface

temperature decreases with the increase in solar constant within the range from

point B to S = 1450Wm−2. When the ice line latitude becomes closer to the

equator, global mean surface temperature increases slightly with an increase in

solar constant within the range from S = 1450Wm−2 to point A. Nevertheless, the

equilibrium solutions on this whole branch are locally unstable, as stated earlier.

The configuration of the branch of small ice cap instability is even more com-

plicated. The transition area from the branch of small ice cap instability to the

branch of ice-free solutions is enlarged in Figure 2b. Branch δ of small ice cap

instability corresponds to the line segment that extends from point C to point D

(Ts = 297K). It connects to branch γ of the stable partially ice-covered solutions
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at point C, and to branch ε of the ice-free solutions at point D. On branch δ, global

mean surface temperature increases with increase in solar constant from point D,

reaches a maximum of Ts =302K at S =1442Wm−2, and then decreases with solar

constant toward point C.

As mentioned earlier, the ice-free state in our EBM consists of two branches,

branch ε and branch ζ shown in Figure 2b. Point E, (S, Ts) = (1441.2Wm−2, 300.4K),

is a critical branch point. Branch ε is connected to branch δ of the unstable

partially ice-covered state at point D, while branch ζ extends up to point F

(1310Wm−2, 453K), which is beyond the range of Figure 2b. As the value of

solar constant increases, global mean temperature increases on branch ε, whereas

it decreases on branch ζ. Almost all of the ice-free solutions plotted in Figure 2a

belong to branch ζ; the ice-free solutions on branch ε are difficult to recognize in

Figure 1 and Figure 2a, because of the superposition of other solutions.

The reason for the existence of two branches of the ice-free state in our EBM

is best understood from the results of the one-dimensional radiative-convective

equilibrium model. It is known that, in a one-dimensional equilibrium model that

includes the same radiative process as that of our EBM, there exists two kinds

of equilibrium solutions for a given value in a certain range of solar constant

[Nakajima et al., 1992]. One is the branch of solutions where an increase in solar

constant is balanced by an increase in OLR, caused by an increase in surface tem-

perature. The other is the branch of solutions where an increase in solar constant

is balanced by an increase in OLR, caused by a decrease in atmospheric opacity

due to the reduction in atmospheric water vapor content forced by a decrease in

surface temperature. Branch ε of ice-free solutions in Figure 2b corresponds to the

former branch of the one-dimensional radiative-convective equilibrium solutions,

while branch ζ corresponds to the latter. S = 1310 Wm−2 at point F, which is the
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lower limit of S for the emergence of the runaway greenhouse state, corresponds to

the limiting value of OLR for cases with high surface temperature. On the basis of

the stability argument on the one-dimensional radiative-convective equilibrium so-

lutions, ice-free equilibrium solutions on branch ε are expected to be stable, while

those on branch ζ are unstable. Our time-dependent calculations confirm that

the ice-free equilibrium solutions on branch ζ are unstable. As is shown in Figure

1, for a given value of incoming solar flux, all equilibrium solutions on branch ζ

coexist with a runaway greenhouse solution.

4 Results of GCM Experiments

Figure 3a shows the relationship between solar constant and ice line latitude of

the statistically equilibrium solutions obtained by our GCM. The runaway green-

house solutions found by the GCM are also plotted by crosses. The relationship

between solar constant and global mean surface temperature of the statistically

equilibrium solutions is shown in Figure 3b. In these figures, results for runs

started from various initial conditions are all plotted. Partially ice-covered statis-

tically equilibrium solutions are found for 1250Wm−2 ≤ S ≤ 1570Wm−2. Of these

solutions, those for 1300Wm−2 ≤ S ≤ 1570Wm−2 are obtained from runs having

the initial conditions of the isothermal atmosphere of 280K. Those for 1250Wm−2

≤ S < 1300Wm−2 are calculated starting from the partially ice-covered solution

for S = 1300 Wm−2, then by gradually decreasing the value of solar constant from

S = 1300 Wm−2. The latter solutions are labeled by P in Figure 3. Globally

ice-covered statistically equilibrium solutions are obtained for S ≤ 1710 Wm−2.

Note, however, that it is for S ≤ 1295 Wm−2 that the globally ice-covered state

is obtained from runs having the initial condition of the isothermal atmosphere

of 280K. The globally ice-covered solutions labeled by F in Figure 3 are obtained
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from a globally ice-covered solution calculated with S = 1000 Wm−2. From this

initial condition, the globally ice-covered state is sustained up to S = 1710 Wm−2.

At S = 1720Wm−2, all of the ice disappears and the runaway greenhouse state

appears.

The partially ice-covered statistically equilibrium state of the GCM extends

to smaller solar constant values and the corresponding ice line latitude reaches

lower latitudes compared to those of the stable equilibrium solution for the EBM.

As is shown in Figure 3a, the smallest value of solar constant for which a par-

tially ice-covered statistically equilibrium solution is obtained by the GCM is

S = 1250Wm−2, with the ice line latitude of 22◦. The corresponding value ob-

tained by the EBM is S = 1306Wm−2, with the ice line latitude at 28◦. The ice

line latitude of the GCM solution for S = 1250Wm−2 remains stable throughout

the long integration period of over 60000 days, while no statistically equilibrium

partially ice-covered solution can be found for S = 1240Wm−2; only a globally

ice-covered solution is obtained.

The reason why the GCM can maintain the partially ice-covered state at smaller

values of solar constant compared to that of the EBM is the existence of the Hadley

circulation. In the region of the Hadley circulation, very efficient heat exchange

takes place in the meridional direction, and the temperature distribution in the

troposphere tends to be latitudinally uniform. In contrast, the heat exchange be-

tween the Hadley circulation cells and regions at higher latitudes is comparatively

inefficient, and so baroclinically unstable zones with latitudinal temperature gradi-

ent are formed [Satoh, 1994]. As the solar constant decreases, the ice line latitude

eventually falls within the Hadley circulation. Then, the equatorward migration

of ice line latitude slows down, since the solar flux supplied to the entire tropical

region efficiently heats the area of the ice line latitudes due to the efficient thermal
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mixing in the Hadley circulation. In our EBM, unlike that of Lindzen and Farrell

[1977], the latitudinal heat transport is modeled simply as a function proportional

to the temperature gradient; thus, the dependence of the efficiency of meridional

heat transport on the dynamical difference of the circulation structure is not repre-

sented. When the ice line latitude reaches the lower latitudes, heat transport from

the equatorial area decreases in the EBM because of the decrease in latitudinal

temperature gradient.

The structure of the Hadley circulation of the partially ice-covered state with

a large ice cap is different from the other cases. Figures 4 and 5 compare the

temporal and zonal mean meridional structures of a statistically equilibrium state

for the case with S = 1380Wm−2 where the ice line latitude is located at 40.8◦,

and for the case with S = 1250Wm−2 where the ice line latitude is located at 22◦,

respectively. The remarkable point is that the locations of the precipitation peaks

for S = 1250Wm−2 are not at the equator but at the ice line latitudes (Figure

5a); little precipitation is observed at the equator. This sharply contrasts with the

ordinary case exemplified for S = 1380 Wm−2 (Figure 4a), where the precipitation

peak is located near the equator. In line with the distribution of precipitation, the

upward motion in the case of the S = 1250Wm−2 appears at the ice line latitudes,

while downward motion appears at the equator (Figure 5b). Also note that the

direction of the Hadley circulation for S = 1250Wm−2 is opposite to that for

S = 1380Wm−2 (Figure 4b). As for energy transport, precipitation at the ice line

latitudes for S = 1250Wm−2 is maintained by the latent heat transport from the

equatorial latitudes, as shown by the solid line in Figure 5c. The transport of

dry static energy, on the other hand, is equatorward as shown by the solid line

in Figure 5d and contributes to the warming of the entire tropics. These also

contrast with the ordinary case exemplified for S = 1380 Wm−2 (Figures 4c and
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4d), where the latent heat energy and dry static energy in the Hadley circulation

are transported equatorward and poleward, respectively.

It seems that the large ice cap instability exists also in the climate system of our

GCM. We could not find a statistically equilibrium partially ice-covered solution

having an ice line latitude lower than 22◦. The partially ice-covered solutions

labeled by P in Figure 3a, whose ice line latitudes are located near 22◦, can be

obtained only when initial conditions are in the vicinities of the solutions. From

an isothermal state with T = 280K, the system cannot reach the partially ice-

covered solutions, and instead, ends up in the globally ice-covered state. There

seems to be a critical point around S = 1250Wm−2 and the ice line latitude of

22◦, and the stability of the statistically equilibrium partially ice-covered state is

weakened as this critical point is approached. On the other hand, the globally ice-

covered solutions labeled by F in Figure 3a can be obtained only from a globally

ice-covered solution. From an isothermal state of T = 280K, the system cannot

reach the globally ice-covered solutions, and instead, ends up in either the partially

ice-covered state or the runaway greenhouse state. There seems to be a critical

point near S = 1710Wm−2 of the globally ice-covered state, and the stability of

the statistically equilibrium globally ice-covered state is weakened as this critical

point is approached. These results suggest that an unstable branch is present in

the GCM solutions.

As for the small ice cap instability, our GCM seems to lack any structure that

clearly corresponds to that of the EBM. The time mean value of the ice line

latitude for S = 1560Wm−2 is 87◦. The system reaches the ice-free state at

S = 1570 Wm−2. From these GCM results, it is hard to assert the existence of a

nonvanishing, minimum size of the ice cap. The transition between the ice-free and

the partially ice-covered statistically equilibrium states appears to be continuous.



– 15 –

As the value of solar constant increases and the ice line latitude recedes poleward,

the fluctuation amplitude of the ice line latitude increases (Figure 6). These results

seem to be consistent with the results of Lee and North [1995]. Lee and North

[1995] obtains the continuous transition from partially ice-covered solutions to the

ice-free solutions with GCM and noise-forced EBM.

The runaway greenhouse state of the GCM emerges for S ≥ 1600 Wm−2 when

the initial condition is the 280K isothermal state. When a runaway greenhouse

solution is used as the initial condition, the range of S which maintains the runaway

greenhouse state extends to the smaller S values. These correspond to the solutions

marked with label R in Figure 3a, for which the runaway greenhouse solution

obtained with S = 1600 Wm−2 is given as the initial condition. The runaway

greenhouse state is maintained even when the value of solar constant is reduced

to S = 1300 Wm−2; global averaged surface temperature continues to increase.

However, for the value of solar constant S = 1280 Wm−2, surface temperature

drops and the globally ice-covered state is reached. The smallest value of S which

can maintain the runaway greenhouse state can be interpreted as the limiting value

of OLR which is achieved in the case where the atmospheric water vapor amount is

sufficiently increased in the one-dimensional radiative-convective model having a

fixed value of tropospheric relative humidity [Nakajima et al., 1992]. The limiting

value of OLR is estimated as 330Wm−2 for tropospheric relative humidity of 60

%, which is the typical value obtained in the GCM. This estimation is in fairly

good agreement with the lowest limit of the globally mean incoming solar flux that

brings about the emergence of the runaway greenhouse state (S/4).
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5 Summary and Discussions

The results obtained by our GCM suggest that the large ice cap instability

also occurs in a three-dimensional system. We may speculate that there exists an

unstable solution with an large ice cap whose ice line latitude is located between

22◦ and the equator. Such an unstable solution in the GCM, if it exists, will be

difficult to find. The structure of the large ice cap instability of the GCM may

be altered from that of EBM because of the existence of Hadley circulation in the

GCM. The EBM of Lindzen and Farrell [1977], which takes into account the effect

of Hadley circulation, may be useful in examining the contrast between the large

ice cap instabilities of the GCM and the EBM in detail. However, we leave this

theme for future studies. As for the small ice caps, our GCM yields statistically

equilibrium states, which seems to indicate that, in our three-dimensional system,

small ice cap instabilitiy does not exist. Our results are similar to those by Lee

and North [1995]. Thus, we have confirmed that a clear counterpart of the small

ice cap instability discussed in EBMs is not found in the GCM in which both the

runaway greenhouse state and the ice-covered state are permitted. Since Lee and

North [1995] predicts that the manifestation of small ice cap instability depends

on the strength of noise forcing, a GCM experiment including the effect of the

response time of ice cover might be an interesting subject. The thermal inertia of

ice sheets may affect stability.

The statistically equilibrium states obtained by our GCM correspond to some

of the equilibrium solutions appearing in the vertically one-dimensional radiative-

convective models. The corresponding ones are the equilibrium solutions on the

branch of increasing OLR with increase in surface temperature obtained by Naka-

jima et al. [1992], and the optically thin equilibrium solutions of Rennó [1997]

and Sugiyama et al. [2005]. The GCM results of this study or of Ishiwatari et al.
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[2002] do not seem to show any correspondences to the optically thick equilibrium

solutions of Rennó [1997] and Sugiyama et al. [2005]. The difference lies in the

dependence of relative humidity on surface temperature. In the optically thick

equilibrium solutions of Sugiyama et al. [2005], relative humidity increases with

increase in surface temperature, while, in the tropics of our GCM, relative humid-

ity decreases [Ishiwatari et al., 2002]. There is a possibility that the moistening

efficiency of cumulus might affect the branch structure of solutions. Rennó [1997]

mentions that the optically thick equilibrium solutions could not be found when

convective adjustment scheme was utilized or when relative humidity was fixed in

his one-dimensional radiative convective model. Solutions corresponding to the

optically thick equilibrium solutions of Rennó [1997] and Sugiyama et al. [2005]

might be obtained in the GCM if the cumulus parameterization scheme, which has

a vigorous moistening effect against the drying in the Hadley circulation region,

is utilized. However, it is unclear at this point whether the moistening effect of

cumulus would be so efficient when surface temperature is increased.

Our GCM demonstrates that a runaway greenhouse state or a statistically equi-

librium state can be realized for the same value of solar constant in the range of

1300 ≤ S ≤ 1570Wm−2 depending on the choice of initial conditions. However,

we have not been able to confirm the expectation of Rennó [1997] that, in order

to produce a runaway greenhouse regime from an equilibrium solution, the finite

amplitude perturbation must be large enough to produce a surface temperature

larger than a critical value which corresponds to the unstable solution of Nakajima

et al. [1992]. The initial perturbation utilized here for activating the runaway state

for 1300 ≤ S ≤ 1570Wm−2 in our GCM is quite huge; it is the runaway solution

at S = 1600Wm−2. At the moment, we have not been able to determine a mini-

mal magnitude of perturbation necessary to produce a runaway greenhouse state
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from an equilibrium solution. In other words, it is required to figure out the GCM

equivalent for the unstable equilibrium solution of Nakajima et al. [1992].

The critical values of solar constant at which the number of equilibrium state

changes as shown in Figure 3a may vary according to the model configurations,

such as the value of albedo, the details of the radiation scheme, and especially,

the radiation effect of cloud which is excluded in the present study. However, the

importance of our results is that we have exemplified the possibility of the coex-

istence of the ice-covered state, the partially ice-covered state, and the runaway

greenhouse state, for a given, common solar constant value. The actual state to be

realized at a particular value of solar constant depends on the initial condition and

how the solar constant is varied. Our result shows that the runaway greenhouse

state, which cannot be represented by previous EBMs [e.g., Budyko, 1969], is lo-

cated not very far from the partially ice-covered or the globally ice-covered state

in the climate regime diagram. Although the results of those previous EBMs are

usually referred to as the standard climate regime diagram, it should be noted that

their diagrams are missing an important regime: the runaway greenhouse state.
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Figure 1: Relationship between solar constant and ice line latitude obtained by the

EBM: open circle, ice-free equilibrium solution; solid circle, a partially ice-covered

equilibrium solution; diamond, a globally ice-covered equilibrium solution; and

cross, a runaway greenhouse solution. Points A to F represent critical points,

and line segments α to ζ represent branches of equilibrium solutions. Numbers in

parentheses on the abscissa indicate calculated values of solar constant for critical

points A to D.
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Figure 2: (a) Relationship between solar constant and global mean surface tem-

perature obtained by the EBM. Symbols are the same as in Figure 1, except that

the case for the runaway greenhouse state is not plotted. (b) An enlarged view of

Figure 2a near critical points C, D, and E.
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Figure 3: (a) Relationship between solar constant and ice line latitude obtained

by the GCM. (b) Relationship between solar constant and global mean surface

temperature obtained by the GCM. The symbols are the same as those in Figure

1. F represents the results for runs in which the initial condition is the ice-covered

solution calculated with S = 1000 Wm−2, R represents the results for those in

which the initial condition is the runaway greenhouse solution obtained with S =

1600 Wm−2, and P represents the results obtained by decreasing S gradually

starting from a partially ice-covered solution obtained using S = 1300 Wm−2.

Points with no labels represent the results whose initial condition is the isothermal

state (280K).
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Figure 4: Temporal and zonal mean meridional structure of the circulation fields

obtained by the GCM for S = 1380 Wm−2. (a) The meridional distributions of

vertical energy fluxes. Thick solid line (also labeled as RAIN) is condensation

heating rate, dashed line (EVAP) is evaporation heat flux, dotted line (OLR) is

outgoing longwave radiation, dashed-dotted line (SLR) is net long wave radiation

at the surface, and thin solid line (SENS) is sensible heat flux. Unit is Wm−2. (b)

Mass stream function. Contour interval is 1.0× 1010 kg s−1. (c) Latitudinal latent

heat transport, and (d) sensible heat transport. Unit is W. Thick line (T) is total

transport, dashed line (M) is zonal and time mean meridional transport, dotted

line (SE) is steady eddy transport, and dashed-dotted line (TE) is time-dependent

eddy transport. Refer to Ishiwatari et al. [2002] for details on the definition of

heat transport.
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Figure 5: Same as Figure 4, but for the case of S = 1250 Wm−2.
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Figure 6: Time series of the ice line latitudes obtained by the GCM. The averaged

latitudes of the northern and southern lines are shown. The upper, middle, and

lower lines correspond to S = 1560, 1380, and 1250 Wm−2, respectively.


