DCL:MATH2:SHTLIB: Spherical Harmonic Functions: Explanation of Subroutines
Performs inverse Legendre transformation.
The following are performed on floating-point spectral data Smn (n =m,m+1,...,M) for a zonal wavenumber m (≥0).
When ISW=0, a normal inverse Legendre transformation is performed.
(4.39)
When ISW=1 When ISW=-1, the latitudinal derivative of the inverse Legendre transform is calculated.
(4.40)
When ISW=-1, the meridional derivative of the inverse Legendre transform is calculated.
(4.41)
SHTLBW(MM,JM,M,ISW,SM,WM,WORK)
MM (I) Input parameter. The cut-off wavenumber (M). JM (I) Input parameter. 1/2 of the NS partition number (J) ISW (I) Input parameter. Specifies the type of transformation (See above definition.) M (I) Input parameter. The zonal wavenumber (m) on which to perform transformation. SM (R) Input parameter. Spectral data. An array of length MM-M+1. (See Notes for arrangement.) WM (R) Output parameter. Wave data. An array of length (2*JM+1). (See Notes for arrangement.) WORK (R) Working area initialized by SHTINT.