DCL:MATH2:SHTLIB: Spherical Harmonic Functions: Explanation of Subroutines
Performs the inverse Legendre transformation, which corresponds to the first half of the inverse spectral transformation.
When ISW=0, a normal inverse Legendre transformation is performed.
(4.21)
When ISW=1, the latitudinal derivative of the inverse Legendre transform is calculated.
(4.22)
When ISW=-1, the meridional derivative of the inverse Legendre transform is calculated.
(4.23)
SHTS2W(MM,JM,ISW,S,W,WORK)
MM (I) Input parameter. The cut-off wavenumber (M). JM (I) Input parameter. 1/2 of the NS partition number (J) ISW (I) Input parameter. Specifies the type of transformation (See above definition.) S (R) Input parameter. Spectral data. (For length and arrangement, see SHTNML.) W (R) Output parameter. Wave data. An array of length (2*JM+1)*(2*MM+1). (See Notes below for arrangement of array.) WORK (R) Working area initialized by SHTINT.